
42

Software-driven Security Attacks: From Vulnerability

Sources to Durable Hardware Defenses

LAUREN BIERNACKI and MARK GALLAGHER, University of Michigan

ZHIXING XU, Princeton University

MISIKER TADESSE AGA, University of Michigan

AUSTIN HARRIS, SHIJIA WEI, and MOHIT TIWARI, University of Texas at Austin

BARIS KASIKCI, University of Michigan

SHARAD MALIK, Princeton University

TODD AUSTIN, University of Michigan

There is an increasing body of work in the area of hardware defenses for software-driven security attacks.
A significant challenge in developing these defenses is that the space of security vulnerabilities and exploits
is large and not fully understood. This results in specific point defenses that aim to patch particular vulner-
abilities. While these defenses are valuable, they are often blindsided by fresh attacks that exploit new vul-
nerabilities. This article aims to address this issue by suggesting ways to make future defenses more durable
based on an organization of security vulnerabilities as they arise throughout the program life cycle. We clas-
sify these vulnerability sources through programming, compilation, and hardware realization, and we show
how each source introduces unintended states and transitions into the implementation. Further, we show
how security exploits gain control by moving the implementation to an unintended state using knowledge of
these sources and how defenses work to prevent these transitions. This framework of analyzing vulnerability
sources, exploits, and defenses provides insights into developing durable defenses that could defend against
broader categories of exploits. We present illustrative case studies of four important attack genealogies—
showing how they fit into the presented framework and how the sophistication of the exploits and defenses
have evolved over time, providing us insights for the future.
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1 INTRODUCTION

There is an increasing body of work in the area of hardware defenses for software-driven security
attacks. A major challenge in developing these defenses is that the space of security vulnerabilities
and exploits is large and not fully understood. This results in specific point defenses that aim to
patch particular vulnerabilities. While these defenses are still valuable, they are often blindsided
by fresh attacks that exploit new vulnerabilities. We believe that there is value to be gained by
organizing the sources of these vulnerabilities and understanding how they lead to specific attacks
and defenses.

At an abstract level, security exploits prevail due to a mismatch between the programmer’s
intended finite-state machine (FSM) for the application/algorithm and its concrete implemen-
tation on a general-purpose processor. Through the process of programming, compilation, and
hardware realization, there are various sources of security vulnerabilities. Each of these sources
introduces states in the concrete implementation that were not intended by the programmer. To
synthesize a security exploit, attackers first leverage a vulnerability to move the concrete imple-
mentation to a state external to the programmer’s intent. Now, outside of the constraints of the
original program, an attacker can manipulate the finite-state machine to subvert security guaran-
tees. This process requires accurate knowledge of implementation information and the state space
to be successful.

In this work,1 we classify the sources of vulnerabilities and implementation information lever-
aged by security attacks. Accordingly, we discuss how defenses directly work to address these
sources of exploits-through thwarting access to the implementation information and the imple-
mentation state space. To support our formalization, we present case studies of prominent attack
genealogies, including control-flow attacks that leverage program-level vulnerabilities to affect
execution. Furthermore, we show that side-channel attacks have relied heavily on microarchitec-
tural implementation information and that these two techniques have been combined to break
some of the field’s most sophisticated defenses. Additionally, we present the historical account
of how attacks have evolved in response to various defense mechanisms. Our study reveals that,
while attacks evolve quickly, the vulnerability sources and their impact on the final state space
of the implementation evolve much more slowly. These observations suggest that defenses that
focus on addressing this connection between the vulnerability sources and their impact on the im-
plementation state space may be more effective and durable than traditional security approaches,
which focus on finding and fixing vulnerabilities. This article makes the following contributions:

• It provides a framework for organizing vulnerabilities that are introduced through the pro-
gramming, compilation, and hardware realization phases of the program life cycle.
• It shows how the vulnerabilities result in mismatches between the programmer’s intended

FSM and the implementation FSM. In particular, it shows how the notion of auxiliary states

1This is a systematization-of-knowledge article where we organize a large body of related work into a framework that
helps us better understand the relationships between different parts, the evolution of ideas over time, and insights for the
future.
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in the implementation FSM can capture side-channel information as well as analog effects
due to charge leakage exploited in attacks like Rowhammer.
• It shows how exploiting a vulnerability requires knowledge of implementation information

throughout the program life cycle and the state space of the resultant implementation FSM.
• It shows how the space of defenses can be classified in terms of how each defense protects

knowledge of the implementation and/or the implementation state space.
• It suggests how defenses can be made more durable through an understanding of the above

framework and by targeting knowledge of the implementation and/or the implementation
state space rather than specific vulnerabilities.
• It presents case studies of the following important attack genealogies by showing how they

fit into the presented framework and how the sophistication of the exploits and defenses has
evolved over time, providing us insights for the future:
• Control-flow Attacks—Hijack the victim’s control flow to execute malicious code.
• Derandomization Attacks—Leak implementation information of a randomization de-

fense in an effort to subvert the protection.
• Timing Side-channel Attacks—Leak a program secret by measuring timing information.
• Transient Execution Attacks—Leverage mispeculation to induce unintended execution

and exfiltrate a program secret.

This article is organized as follows. Section 2 presents the life cycle of a program and outlines
the vulnerability sources at each phase in this life cycle. Section 3 discusses how vulnerability
sources throughout the program life cycle are leveraged for attacks. Section 4 characterizes how
defenses work within our framework to mitigate attacks. Section 5 presents case studies of four
important attack genealogies-control-flow attacks, derandomization attacks, timing side-channel
attacks, and transient execution attacks-and shows how they fit into our framework. Section 6
concludes this article by highlighting trends and takeaways from this work.

2 MODELING THE PROGRAM LIFE CYCLE

A programmer has some notion of software design even before writing a line of code. We model
the desired program functionality that captures the programmer’s intent using a FSM, termed the
intended FSM . This FSM exists only in the mind of the programmer and captures program be-
havior as transitions between abstract states. The programmer eventually programs hardware to
emulate the functionality of the intended FSM. This act of programming requires multiple trans-
formations to the intended FSM, ultimately yielding an implementation FSM that emulates the
intended FSM and runs on the target processor.

Previous work has similarly presented the intended FSM to formalize disparities between the
programmer’s intent and the final implementation [34]. We take this a step further by under-
standing the transformations across multiple phases of the program life cycle, shown in Figure 1:
high-level programming, compilation, and hardware realization. The first two phases produce in-
termediate FSMs, termed the language-level and instruction-level FSMs, respectively. Each phase
employs an abstract model of computation to produce the resultant FSM and may contain other
sources that add state and transitions not in the intended FSM (referred to as unintended states and
transitions). These unintended states are dangerous, as cleverly crafted inputs that reach them can
force the program outside of the original specification. Once no longer bounded by the program’s
constraints, the implementation may produce unexpected results or violate security guarantees.
Thus, these sources of unintended states are effectively vulnerability sources, shown in blue in
Figure 1.
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Fig. 1. Program Life Cycle. A programmer’s intended finite-state machine (FSM) is transformed into an im-

plementation FSM through multiple phases of the program life cycle: high-level programming, compilation,

and hardware realization. The first two phases produce intermediate FSMs, termed the language-level and

instruction-level FSMs, respectively, and each phase employs an abstract model of computation to produce

the resultant FSM. Additionally, each phase may contain other sources that add unintended state (grey

nodes) and transitions (red edges) that are absent from the intended FSM. Undefined semantics in high-level

programming and compilation introduce non-deterministic transitions (dashed red edges) that are defined

later in the program life cycle. Within this framework, every input into Sigma (Σ) is a vulnerability source

and introduces unintended states and transitions that can be leveraged for security exploits.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 3, Article 42. Publication date: July 2021.



Software-driven Security Attacks 42:5

At each stage in the program life cycle it is useful to think of the state of the program and what
causes it to move away from its intended next state to one where it is susceptible to an attack. By
representing programs as transition systems, we can reason about security vulnerabilities as un-
intended transitions within the state space of program evolution (i.e., the program’s FSM), where
state is characterized by what the program is doing (i.e., data state, like memory contents) and
where the program is in execution (i.e., control state, like the program counter). Similarly, we can
model defenses as preventing a program from making these unintended transitions or limiting
subsequent unintended transitions that can be forced by an attacker to induce malicious function-
ality. To address the significant challenge of understanding the large space of security exploits, our
program life cycle framework is designed as a conceptual model to organize vulnerability sources
across the program life cycle and model how defenses address these vulnerability sources.

2.1 High-level Programming

High-level programming is the process of expressing the programmer’s intended application into
source code in some programming language. High-level programming modifies the intended FSM,
concretizing potentially abstract states, expanding the state space, and introducing new transitions.
Two distinct mechanisms drive this modification: the programmer’s notional computer model and
language-level undefined semantics.

2.1.1 Notional Computer Model. A notional computer model is specific to a programmer and
captures all assumptions they hold of the computation engine, including notions of the program-
ming language, compiler, and processor. The specifics of this model depend heavily on the pro-
grammer’s expertise, with a novice programmer’s notional computer model likely capturing only
a subset of the operations that the programming language affords. However, an expert program-
mer’s notional computer model is likely to span beyond the language to capture elements of the
entire system. For example, a programmer with knowledge of the target processor’s memory lay-
out may manually attempt structure packing to reduce their program’s memory footprint. While a
programmer may have different notional computer models specific to each programming language,
this distinction is not relevant to the ideas presented in this work.

The notional computer model permits the introduction of logic bugs and vulnerabilities into
the resultant source code. These flaws can arise from discrepancies between the programmer’s
notional computer model and actual program execution. For example, consider a novice program-
mer performing array operations in C who is unaware that C uses zero-based indexing. To access
the first element of an array of length n ≥ 1, they load index one, rather than index zero. While
the programmer intends to access the first element of the array, they mistakenly load the second.
This operation is unintended with reference to the intended FSM, introducing a transition to an
unintended state in the resultant language-level FSM . In this example, the result of this transition
is well defined within the high-level programming phase. However, other transitions introduced
within this phase may be non-deterministic, only to be defined later in the program life cycle.

2.1.2 Language-level Undefined Semantics. Not all programming mistakes result in well-defined
transitions in the language-level FSM. Non-deterministic transitions are also introduced during
the high-level programming phase due to the effects of language-level undefined semantics.
In this work, we define language-level undefined semantics as any source code construct for
which the programming language standard does not impose a specific behavior. Continuing the
above example, to access the last element of the array, the programmer loads index n, a nonex-
istent item outside of the array’s bounds. Out-of-bounds memory accesses are undefined in the
C-language specification, meaning they are permitted but their effect is not guaranteed. This oper-
ation is unintended with reference to the intended FSM, and its result is undefined, introducing a
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non-deterministic transition (unspecified destination state) in the resultant machine. Only after
compilation and hardware realization will we know the destination state of this transition.

Language-level undefined semantics comprise the traditional notions of undefined behavior,
unspecified behavior, and implementation-defined behavior in the C/C++ standard. For undefined
and unspecified behavior, the standard imposes no deterministic outcomes-for undefined behav-
ior, the standard states nothing, whereas, for unspecified behavior, the standard states at least two
different outcomes. Implementation-defined behavior is a subset of unspecified behavior that the
operating environment implements consistently and documents fully (e.g., whether char behaves
as signed char or unsigned char). Programmers with knowledge of the target system can re-
liably leverage implementation-defined behavior due to the environment’s guarantees, whereas
the usage of undefined behavior is generally regarded as erroneous. We classify all of these three
distinctions as language-level undefined semantics, because the use of these semantics, either unin-
tentionally or intentionally, introduces non-deterministic transitions into the language-level FSM.

2.1.3 Phase Summary. The high-level programming phase produces source code that provides
a specification of a language-level FSM. This resultant FSM emulates the intended FSM and in-
cludes an expanded state space due to the effects of the notional computer model and language-
level undefined semantics. Specifically, the notional computer model introduces unintended states
and transitions into the language-level FSM due to misconceptions held by the programmer (e.g.,
confusion between zero- and one-based indexes). Language-level undefined semantics add non-
deterministic transitions that are only defined during the later phases of compilation or hardware
realization (e.g., buffer overflow). Attackers leverage knowledge of these effects as they provide a
direct means to invoke transitions to unintended states to gain control or leak information.

2.2 Compilation

Compilation transforms source code into a program binary for the target processor. Compilation
modifies the language-level FSM, resolving its non-deterministic transitions, expanding the state
space, and introducing new transitions, using three mechanisms: the compiler’s abstract processor
model, compiler choices, and instruction-level undefined semantics.

2.2.1 Abstract Processor Model. The abstract processor model captures the target processor
and context in which the program executes to permit code generation and optimization. It includes
notions of the instruction set architecture, such as the number of registers or addressing modes
on the target device, needed to transform the source code into a form that can be executed on
the target processor. This information is used by the abstract processor model to make decisions
regarding register allocation and instruction scheduling. Additionally, the model also captures the
functionality of the target device, which is necessary to achieve correctness while performing op-
timizations. By modeling the semantics of the source and target language, the compiler can assure
that any transformations to the FSM maintain input and output consistency (i.e., the program still
produces the intended output for possible inputs). An abstract processor model is specific to a
compiler instance and can produce alternative program binaries dependent on the decisions made
during compilation.

The abstract processor model may be incomplete or even faulty, introducing unintended func-
tionality into the resultant binary. For example, while compilers model program functionality,
many do not model microarchitectural state. This disparity permits optimizations that maintain
input-output consistency but modify cache contents or memory access patterns. One culprit of this
memory alteration is dead store elimination. Consider an application that reads a password from
the command line, computes its hash, and sends the hash to the server for authentication. During
the calculation of the hash function, the plaintext password is stored in memory. Afterward, the
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program erases this variable for security purposes by setting it to zero. From the compiler’s perspec-
tive, the password is never used after it is set to zero, meaning that this zeroing store is dead. Thus,
through dead store elimination, the compiler removes this zeroing store, causing the true plaintext
value to persist in memory despite the programmer’s intent. With respect to our framework, the
compiler introduces unintended states and transitions into the resultant instruction-level FSM

where the program counter advances and the plaintext password persists in memory. The state
of the incremented program counter and sensitive password is not intended by the programmer.
Ultimately, discrepancies in the abstract processor model introduce unintended functionality to
the resultant FSM and have been termed the “correctness-security gap” in compilers [33].

2.2.2 Compiler Choices. Compiler choices encompass the decisions made by the compiler to
implement source code constructs on a hardware platform. Most notably, compiler choices include
data and code layout and representation. These decisions reflect the abstract processor model, as
the instruction set and target architecture limit viable options. Compiler choices affect the resultant
program binary and instruction-level FSM by adding complexity, increasing the size and number
of states, and modifying transitions. Compiler choices may also resolve non-determinism in the
language-level FSM, for example, by specifying that the type char behaves as unsigned char.

We find that attackers repeatedly leverage knowledge of compiler choices to perpetrate security
exploits. Consider the buffer overflow example discussed in Section 2.1. While this vulnerability is
introduced during the high-level programming phase, it can only be exploited for a stack smashing
attack with knowledge of compiler choices. Namely, an attacker must know the contents of the
stack as well as the target function’s location to overwrite the return address and redirect program
execution reliably [92]. These two attack assets are determined by compiler choices.

2.2.3 Instruction-level Undefined Semantics. Akin to high-level programming languages, assem-
bly languages may include constructs with no specific defined behavior, termed instruction-level

undefined semantics. These undefined semantics within the assembly language similarly add
non-deterministic transitions to the resulting instruction-level FSM. For example, the x86-64 stan-
dard does not define the value of flags for all instructions. The parity flag, %pf, is undefined for the
andn instruction, enabling processors to either update the flag or keep the previous value. Previous
work has shown that processors implement this semantic differently [30]. While instruction-level
undefined semantics cause unintended states and transitions in the implementation FSM, we have
not found evidence of existing security exploits that leverage these assets.

2.2.4 Phase Summary. The compilation phase produces a program binary file that provides a
bit-level specification of an instruction-level FSM. This binary is one of many possible alternative
files that can be generated depending on the compiler instance and choices. The instruction-level
FSM speaks to these choices, capturing all compiler decisions, including data layout. Hence, the re-
sultant machine includes an expanded state space due to the effects of compiler choices and the ab-
stract processor model. The abstract processor model introduces both unintended states and transi-
tions into the resultant instruction-level FSM (e.g., persistent state security violations). Instruction-
level undefined semantics add non-deterministic transitions that are later determinized by the mi-
croarchitecture. Attackers leverage knowledge of these effects, especially code and data layout, to
perpetrate security exploits on the target hardware platform.

2.3 Hardware Realization

Hardware realization is a process that takes input in the form of a program binary and executes
it on a hardware platform. This program execution follows the implementation FSM , which
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captures all reachable states in the target processor, including modeling the relevant contents of
microarchitectural structures. Hardware realization resolves all remaining non-determinism in the
implementation FSM, expands its state space, and introduces new transitions, under the influence
of two mechanisms: the physical processor model and microarchitectural choices.

2.3.1 Physical Processor Model. The physical processor model depicts one of many possible
architecture targets for the resultant implementation, modeling the hardware that implements
the functionality specified by the instruction set architecture. For example, the physical proces-
sor model transforms load/store operations in the program binary into complex hardware-based
protocols that implement virtual memory. Because the physical processor model includes notions
of all microarchitectural structures, it expands the state space of the instruction-level FSM im-
mensely. The resultant implementation FSM contains states representing all possible combinations
of the contents of these structures that are reachable from the initial state (e.g., all possible values
of the program counter).

The physical processor model may also perform transformations on the FSM to optimize perfor-
mance, such as realizing speculative execution. These transformations preserve functional correct-
ness but can modify state in an unintended manner, increasing the complexity of the resultant state
space and introducing new transitions among states. The most compelling and currently relevant
example of this phenomenon is mispeculation. During branch misprediction, modern processors
squash in-flight instructions and roll back execution. These procedures preserve program function-
ality. However, not all changes to the microarchitecture are reverted. Evidence of the mispeculated
instructions remains in structures like the cache, a property that recent attacks such as Spectre [57]
and Meltdown [62] have exploited to exfiltrate program secrets. In terms of the implementation
FSM, the state before and after rollback is different even though functional correctness is preserved.

In isolation, mispeculation is not dangerous. However, it becomes dangerous when combined
with other effects of the physical processor model. Specifically, given the current design of microar-
chitectural structures, the physical processor model introduces state to the resultant FSM that is
shared between programs. This shared state originates from structures that are not flushed dur-
ing context switching, allowing data to linger after execution completes. In the context of the
implementation FSM, this shared state manifests as residues from other programs that can affect
the victim program’s execution, or alternatively be used to monitor the victim program externally.
Shared state can be dangerous as it establishes a channel for third-party observation of a program
and may even permit external influence over execution. In the case of mispeculation, shared state
enables an attacker to observe the residue of squashed instructions through the cache. Shared state
also allows an attacker to influence which control transfers are mispredicted by priming the branch
predictor. These mechanisms have been abused for devastating hardware-based exploits [45, 62].

2.3.2 Microarchitectural and OS Choices. Microarchitectural choices encompass decisions
that realize microarchitectural structures on the target device, such as the size and layout of the
caches, TLB, store buffer, and so on. There may be multiple microarchitectural choices that imple-
ment the functionality required by the physical processor model, but ultimately only one design is
employed, affecting the resulting state space in the implementation FSM. We distinguish microar-
chitectural choices from the physical processor model, because attacks often leverage these specific
details in security exploits. For example, shared cache state can be used to observe transient instruc-
tions, as mentioned above. However, an attacker must have knowledge about the cache structure,
including the size and associativity of the cache, to extract this information with high fidelity. This
knowledge of the cache originates from microarchitectural choices. While many attacks are still
viable without knowledge of microarchitectural choices (e.g., control-flow attacks), we find that
timing side-channels and other architecture-based attacks repeatedly leverage knowledge of these
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decisions. Operating System (OS) choices capture decisions made by the system during runtime.
This mechanism primarily represents code and data locations determined at load time due to the
use of either position-independent code or Address Space Layout Randomization (ASLR) [75].
In this work, we assume code and data location is determined at compile time unless explicitly
stated.

2.3.3 Auxiliary State. The implementation FSM also includes auxiliary state, such as wall
clock time and occurrence count, that is not reflected at the bit-level in the microarchitecture
but retains information and may influence transitions during execution on the target processor.
Notably, analog effects can be discretized as auxiliary state for the purpose of modeling them
in the FSM. In this work, we distinguish between readable and writeable auxiliary state. Promi-
nent examples of auxiliary states leveraged by security exploits include overall program execution
time [58] and occurrence count of memory accesses, which can be used to capture DRAM cell
charge leakage [54]. Program execution time is a readable auxiliary state that can be “read” in a
variety of ways by an attack. Occurrence count is a writeable auxiliary state that reflects the count
of a particular operation (e.g., memory access) and that, on crossing some threshold in some du-
ration, leads to a change of memory state (e.g., bit flip in a DRAM ). Thus, occurrence count can
be used to effectively model the analog effects of the microarchitecture. As this information is not
reflected in the microarchitecture directly, auxiliary state is, in general, hard to model in advance
and instead modeled post-facto once its possible use is known.

2.3.4 Phase Summary. The hardware realization phase produces an implementation FSM that
runs on a specific target architecture (of many) and sufficiently emulates the intended FSM. The
implementation captures all additional state resulting from the physical processor model and mi-
croarchitectural choices, as well as the prior compilation and high-level programming phases. The
physical processor model may also introduce transitions that do not match the programmer’s in-
tent, such as leaving execution residues in microarchitectural structures. Finally, the hardware-
implemented FSM contains no non-deterministic transitions, as every transition can be fully de-
fined given knowledge of the entire state space. The hardware realization stage produces an im-
plementation that contains numerous unintended states and transitions resulting from the effects
of the entire program life cycle. Knowledge of these mechanisms is leveraged across attack classi-
fications to perpetrate security exploits.

2.4 Relation to Previous Works

The framework presented in this article details how the different phases of the program life cycle
introduce unintended states and transitions into the final implementation. This framework builds
upon the weird machines model that captures how security exploits arise from unexpected program
input that triggers unintended functionality [20, 34]. In that work, reachable states in the hardware
implementation that enable unintended functionality form a new computational device, termed
a “weird” machine, that permits security exploits. Work on weird machines specifically looks at
the disparities between the programmer’s intent and the resultant hardware implementation, but

not the intermediate mechanisms at play. Dullien has characterized these differences using formal
computational models [34]. Other work has studied specific instances of weird machines in the
context of page faults [13], ELF executables [86], and proof-carrying code [97].

There is a significant body of work that identifies how undefined semantics in the C and C++ pro-
gramming languages introduce vulnerabilities during compilation [19, 33, 61, 80, 99]. These works
document how choices made during compilation resolve non-determinism from language-level un-
defined semantics in an unexpected way, such as by removing security checks (Section 3.1.2) [33].
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Other work has modeled how weird machines arise during compilation due to behaviors in the
target language that cannot be achieved by the semantics of the source language [76].

No work has provided a complete framework of how programmer conceptions, compiler inter-
actions, and microarchitectural details introduce unintended states and influence security exploita-
tion. In this work, we broadly reassess security exploits through the complete program life cycle,
expanding the weird machine model to capture effects from the programmer, compiler, and mi-
croarchitecture. Our goal is threefold: (i) To capture all sources of vulnerabilities throughout the
program life cycle, (ii) To understand how these sources are exploited to force the implementation
FSM into an unintended state that compromises security, and (iii) To illuminate how knowledge
of this framework and the implementation FSM can lead to an understanding of durable defenses
that thwart complete categories of unintended functionality rather than patching individual vul-
nerabilities.

3 SECURITY EXPLOITS

In Section 2, we presented our program life cycle framework, which models how high-level pro-
gramming, compilation, and hardware realization introduce unintended states and transitions into
the implementation FSM. Unintended states permit security exploits by enabling an attacker to cir-
cumvent the programmer’s intent and cause unwanted program behavior. In this section, we delve
further into how security exploits rely on these states to infiltrate victim programs.

Within our proposed framework, we characterize a security exploit as a path from intended to
unintended states that produces unexpected and unwanted behavior in the implementation that is
not possible in the intended FSM. Perpetrating an exploit requires two critical components: a tran-
sition between an intended and unintended state, termed a vulnerability, to bypass the program
intent/specification, and knowledge of the state space, termed implementation information,
to reliably manipulate the implementation FSM. We have found that security exploits leverage
vulnerabilities and implementation information from all phases of the program life cycle. These
vulnerability sources are the blue colored boxes in Figure 1. We note that numerous exploits for
a single vulnerability exist if multiple paths in the implementation FSM can use this vulnerability
to achieve the same ends. Alternatively, exploits may also leverage different vulnerabilities to pro-
duce the same unwanted behavior. Below, we enumerate the vulnerabilities and implementation
information commonly leveraged by attacks and identify their sources.

3.1 Vulnerabilities

Vulnerabilities are transitions in the concrete implementation that move the machine to an unin-
tended state. By leveraging a vulnerability, an attacker moves the implementation FSM to a state
that the programmer did not consider, enabling incorrect behavior or the evasion of security pro-
tections not represented within the present state. These dangerous transitions originate from all
phases of the program life cycle, from programmer misconceptions to the physical hardware’s
subtleties. We enumerate classes of common vulnerabilities in Table 1, categorizing them by their
source, or the mechanism that introduces the offending transition into the FSM at the end of that
phase. Below, we detail the vulnerabilities introduced during each phase of our framework.

Vulnerabilities originating from high-level programming are often triggered by program in-
puts (e.g., arguments passed through the command line), whereas vulnerabilities from subsequent
phases are triggered by other influenceable states (e.g., branch predictor state). An attacker can
trigger these transitions to shift the implementation FSM beyond the intended specification by
carefully interfering with the target processor. However, to do so, an attacker must be able to suc-
cessfully find and trigger a vulnerability. When this vulnerability originates from high-level pro-
gramming, an attacker must have intimate knowledge of the program source code to locate this
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Table 1. Enumeration of Vulnerabilities

Vulnerability Phase Source
Unintended FSM
Transition

Memory Access Errors. High-level Language-level Based on illegal
Buffer overflow, dangling pointer, use-after-free, etc. Programming Undefined Semantics memory access

Uninitialized Values. High-level Language-level Based on unpredict-
Using a value not yet assigned Programming Undefined Semantics able memory value

Signed Integer Overflow. High-level Language-level Based on modulo
A numeric value that exceeds the number of storage bits Programming Undefined Semantics wrapping properties

Unsigned Integer Overflow. High-level Notional Computer Based on modulo
A numeric value that exceeds the number of storage bits Programming Model wrapping properties

Sharing-dependent Program Execution. Hardware Realization Physical Processor Based on externally
Program execution that depends on shared state (e.g., branch predictor contents) Model influenced state

Sharing-dependent Program Timing. Hardware Realization Physical Processor Based on externally
Program timing that depends on shared state (e.g., external cache conflicts) Model influenced state

Mispeculation. Hardware Realization Physical Processor Based on (incorrect)
Unintended execution of spurious instructions Model speculative state

Side Channels. Hardware Realization Physical Processor Reveals secret
Confidential information propagated to unintended outlets Model state information

Usage-dependent Analog Behavior. Hardware Realization Physical Processor Based on auxiliary
Rowhammer, A2 attack [106], etc. Model state

Vulnerabilities are transitions to unintended states in the FSM. We classify vulnerabilities by their phase and source:
whether they are introduced during high-level programming via language-level undefined semantics or the notional
computer model, during compilation via instruction-level undefined semantics, or during hardware realization via the
physical processor model. This list is not exhaustive of all vulnerabilities, but rather represents those most prevalent in
security exploits.

single fault. While this appears challenging, the commonality of some program-level vulnerabili-
ties, like buffer overflows, eases this task. Additionally, vulnerabilities originating from hardware
realization will be shared across multiple programs running on the same target platform. As a re-
sult, hardware-based vulnerabilities can be more pervasive and harder to address due to the fixed
nature of physical processors.

3.1.1 Vulnerabilities Originating From High-level Programming. During high-level program-
ming, language-level undefined semantics introduce vulnerabilities in the form of non-
deterministic edges that are later defined during compilation or hardware realization.
Language-level undefined semantics leveraged by the security exploits covered in this work in-
clude spatial and temporal memory access errors, the use of uninitialized values, and signed

integer overflow. We note that these vulnerabilities may also persist in the source code due to pro-
grammer misconceptions about the functionality of these operations. For example, a buffer over-
flow is a language-level undefined semantic, but it may also exist in the program due to a flawed
notional computer model (e.g., a programmer that is unaware that C uses zero-based indexing, as
discussed in Section 2.1). Hence, misconceptions and undefined semantics are often intertwined,
working concurrently to produce flaws in the source code. Misconceptions can also introduce vul-
nerabilities when undefined semantics are not in play. For example, unsigned integer overflows

can be just as dangerous and prevalent as signed integer overflows despite being fully defined by
the C/C++ specification. Because these vulnerabilities are introduced during high-level program-
ming, their expressiveness depends heavily on the remaining implementation. For example, the
layout of the stack and presence of the NX-bit [87] will limit the viability of a buffer overflow
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vulnerability. In Section 5.1, we discuss how control-flow attacks heavily use language-level vul-
nerabilities to subvert program constraints.

3.1.2 Vulnerabilities Originating From Compilation. Compilation can also introduce transitions
to unintended states into the resultant instruction-level FSM. These effects include optimizations
that modify the timing or memory access patterns of programs, as discussed in Section 2.2.1.
Changes made during compilation may also reintroduce program-level vulnerabilities. For exam-
ple, consider a program that computes the size of an integer array by multiplying the number of
array elements by sizeof(int) and stores this result in an integer variable called sz. If the num-
ber of array elements is sufficiently large, then the variable sz will overflow, because it is only
represented by 32 bits. To prevent this signed integer overflow vulnerability, the program checks
if sz is smaller than the number of array elements and aborts to indicate this exception. Since
a signed integer overflow is undefined in the C language, the compiler may assume that the if-
condition is always false (i.e., sz cannot be smaller than the number or array elements) and mark
it as dead code [33]. Thus, this flaw in the compiler’s abstract processor model permits the removal
of this security check, resulting in code that contains an integer overflow vulnerability despite the
programmer’s intent to actively avoid one. With respect to our framework, although this compiler
operation removes a security check, it introduces unintended states and transitions into the re-
sultant FSM in which sz is smaller than the number of array elements and the program counter
continues to advance. Such an integer overflow vulnerability could be used to allocate a zero-sized
array or hash table to enable arbitrary code execution, as was done by attacks on SSH1 [1].

3.1.3 Vulnerabilities Originating From Hardware Realization. Vulnerabilities introduced during
hardware realization originate from the physical processor model and especially from design
choices related to shared and auxiliary state. Specifically, the physical processor model adds tran-
sitions dependent on influenceable states (i.e., shared state or writable auxiliary state) or forms
paths that propagate confidential information to observable outlets (i.e., shared state or readable
auxiliary state). These formulations are unintended with respect to the intended FSM and per-
vasive across architecture-based attacks. For example, mispeculation permits the execution of
unintended instructions. In isolation, mispeculation is not dangerous, as discussed in Section 2.3.
But, when combined with vulnerabilities originating from hardware realization, transient execu-
tion becomes a powerful tool to perpetrate security exploits. Attackers can influence transient
execution due to sharing-dependent program execution in the microarchitecture. Specifically,
shared state, like the branch predictor contents, affects program transitions, enabling an attacker
to control execution without supplying program input directly. Furthermore, transient execution
leaves residues in the cache, affecting shared state (cache contents) and readable auxiliary state
(timing), due to the presence of a side channel vulnerability. With these two mechanisms in hand,
an attacker can force a program to execute an instruction speculatively and observe the traces of
that execution. In addition to sharing-dependent program execution and side channels, we recog-
nize usage-dependent analog behavior as a vulnerability introduced during hardware realiza-
tion. This vulnerability captures transitions caused by analog-based auxiliary state (Section 2.3.3),
such as how a bit flip can occur in DRAM due to repeated accesses to a neighboring row [54].

3.2 Implementation Information

Knowledge of the state space of the implementation FSM, termed implementation information,
is leveraged directly for security exploits. Given this information, an attacker has a better under-
standing of vulnerability sources and both unintended states and transitions in this FSM. Hence,
the attacker has a stronger and more refined model of the semantics of the implementation than
the original programmer. Attackers can take advantage of this information to find a way to
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Table 2. Enumeration of Implementation Information

Implementation Information Phase Source Acquisition

Code Contents. High-level Programming Notional Computer Model doc, engr,
Behavior of functions, etc. probe

Location of Code/Data. Compilation Compiler Choices* engr
Location of stack, heap, etc.

Order of Code/Data. Compilation Compiler Choices doc, engr
Order of variables within a stack frame, etc.

Representation of Code. Compilation Compiler Choices doc
Binary representation of instructions

Representation of Code/Data Pointers. Compilation Compiler Choices doc
Binary representation of addresses

Microarchitectural Sharing. Hardware Realization Microarch. Choices engr, probe
Cache collisions, shared BTB entries, etc.

Timing of Operations. Hardware Realization Microarch. Choices probe
Latency of memory accesses, etc.

We classify implementation information by its phase and source, whether it is introduced during high-level programming
via the notional computer model, during compilation via compiler choices, or during hardware realization via
microarchitectural choices. Furthermore, we specify how this implementation information is acquired by attackers via
documentation (doc), reverse engineering efforts (engr), or probing techniques (probe). This list is not exhaustive of all
implementation information, but rather represents the classes most prevalent in security exploits. *Location of Objects
originates from OS Choices when ASLR [75] is in place.

synthesize an exploit and subvert the program’s security measures. It should be noted that im-
plementation information does not detail specific states or transitions, but is a property of the
state space as a whole. This knowledge is, in effect, more compelling, as an attacker can often suc-
cessfully synthesize exploits with only a few fundamental pieces of implementation information.
Table 2 enumerates implementation information that is typically required by exploits. We catego-
rize implementation information by its source, or the mechanism that introduces the state informa-
tion during the program life cycle. We also categorize implementation information by the method
in which knowledge of it is acquired, termed Implementation Information Acquisition, through one
of the following channels: documentation (doc), reverse engineering (engr), or probing (probe).
These methods of acquisition broadly capture three possible scenarios for understanding a particu-
lar system aspect: (i) The system aspect is documented publicly and is known by the attacker or can
be obtained easily, (ii) The system aspect is not documented publicly but can be directly derived
using knowledge of other system aspects, or (iii) The system aspect can only be indirectly derived
by querying the system and observing a response. Below, we discuss implementation information
acquisition in depth, and enumerate information sources in each stage of our framework.

3.2.1 Implementation Information Acquisition. Security exploits require some knowledge of the
implementation information to succeed. Control-flow attacks that exploit program-level vulnera-
bilities typically require knowledge of the memory layout, stack organization, and code locations.
Similarly, hardware-based attacks, like timing side-channels, require knowledge of microarchi-
tectural structures and sharing between processes. This knowledge is obtained using acquisition
methods (doc, engr, or probe) at each level of the program life cycle.

By leveraging documentation (doc) and reverse engineering techniques (engr), an attacker can
gain knowledge of system aspects determined during high-level programming and compilation.
Documentation and formal specifications of the programming-language and operating system are
among the most trivial ways to obtain knowledge of these system aspects. Alternatively, reverse
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engineering the program binary can also reveal implementation decisions made during compila-
tion. For example, calling conventions in the executable can expose the organization of the call
stack. The program binary also reveals the location of functions or the relative distance between
functions, depending on the underlying runtime environment.

Knowledge of the hardware is among the most difficult to obtain, as processor design is
proprietary, and often requires sophisticated probing techniques (probe) to infer the imple-
mentation information. For example, timing side-channel attacks must have knowledge of the
cache layout to craft an eviction set. However, constructing an eviction set for the last-level

cache (LLC) is difficult, because it is physically indexed, and other microarchitectural choices,
such as dividing the LLC into per-core slices, complicates the cache mappings. Rather than
reverse-engineering the hash function used to distribute the cache to different cores (as in Ref-
erence [47]), Prime+Probe [63] proceeds by probing the LLC to iteratively construct an eviction
set. Specifically, Prime+Probe selects a potential conflict set from a large buffer, then repeatedly
checks if this set evicts a candidate memory line from the LLC by measuring memory access times
(i.e., readable auxiliary state). Candidate memory lines are added to the conflict set if they are not
evicted (i.e., when the memory access is fast). Once the conflict set is formed, the attack repeats a
similar process to partition the conflict set into an eviction set for a specific candidate line. After
this second iteration, the attacker has acquired sufficient knowledge of microarchitectural sharing
in the LLC to synthesize the side-channel exploit.

If the implementation is totally opaque to the user, then security exploits cannot prevail. How-
ever, information leakage is innate to many implementation decisions by design, therefore, opaque
implementations are not a universal solution. For example, the timing of a memory access re-
veals if there is a hit or miss in the cache. This property is inherent to the cache design, yet leaks
information that can be used to determine the contents of memory. Rather than making imple-
mentation information completely opaque, an alternative solution is to make it unreliable and in-
consistent. Such randomization techniques increase the difficulty of implementation information
acquisition. For example, ASLR [75] determines memory layout at load-time, forcing attackers to
obtain memory information using sophisticated probing techniques when only reverse engineer-
ing was required previously [17, 36, 42, 90]. Randomization defenses are further characterized in
Section 4.3.

3.2.2 Implementation Information From High-level Programming. Perhaps the most critical im-
plementation information required for exploits is knowledge of the contents of the victim source

code. Code contents detail how the intended FSM is implemented as source code, capturing pro-
gram functionality like function contents, input formatting, and operational behaviors. All security
attacks exploit some degree of knowledge of a victim program. Stack smashing attacks must under-
stand how to provide program input that propagates to a buffer-overflow vulnerability [8]. Code
reuse attacks must know the functionality of code gadgets [81, 92]. Timing side-channel exploits
rely on secret-dependent program execution (e.g., modular exponentiation with key-dependent ex-
ecution timing) [58]. Spectre attacks require knowledge of a Spectre gadget, or jump instruction in
the victim program [57]. To acquire this information, attackers may use documentation, reverse en-
gineering, or probing techniques. Attackers leverage software documentation, open-source code,
or knowledge of popular libraries to discover program functionality easily (doc). If the source
code is not widely available but the binary is, then disassembling the binary can provide similar
information (engr). If neither is available, then attackers may attempt to glean program behavior
through probing the API, repeatedly sending inputs to profile the results (probe).

3.2.3 Implementation Information From Compilation. The compiler implements many compo-
nents of the implementation FSM that are critical to program execution, including the location
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and order of objects. For example, during compilation, the operating system, compiler, and target
instruction-set dictate the implementation of function calls in the source code. This is traditionally
done through the manipulation of a call stack. Values stored to the stack record the control flow of
the program and pass arguments to the requested function. In addition, the call itself decomposes
into multiple instructions that calculate the target function pointer and jump to the resulting ad-
dress. These abstractions are hidden from the programmer in high-level languages and add state to
the resulting implementation that is critical for stack smashing exploits [8]. In addition to data and
code layout, the compiler also implements the representation of code and pointers. While these
mechanisms are heavily constrained by what the target processor supports, they are introduced
into the resultant binary and instruction-level FSM during compilation.

3.2.4 Implementation Information From Hardware Realization. Hardware realization massively
expands the state space of the implementation FSM based on microarchitectural choices. The re-
sultant machine contains shared and auxiliary state, including properties of microarchitectural

sharing and the timing of operations. Knowledge of these two pieces of implementation infor-
mation is leveraged directly for transient execution attacks (Section 5.4), like Spectre V2 [57]. Spec-
tre attacks leak information by combining speculative execution with data exfiltration through
timing side-channels. Spectre V2 does this by mistraining the processor’s branch predictor to mis-
predict a specific indirect branch of the attacker’s choosing, then observing the residues of this
transient execution through the cache. While this attack requires some knowledge of program-
level information, like the location of the victim branch, it also requires intimate knowledge of
the branch predictor. To reliably mistrain the predictor, the attackers used experiments to reverse
engineer (engr) the branch predictor on the target machine. They found that a predictor on a
Haswell i7-4650U only stores the lower 20 bits of the virtual address for twenty-nine previous
destination addresses [57]. Using this knowledge, they were able to craft malicious code to mis-
train the predictor reliably. The remainder of the attack recovers cache residues by performing
Flush+Reload [107].

Defenses may also seek to instantiate implementation information during hardware realization
to prevent attacks. ASLR [75] randomizes the location of the code segment when the program is
loaded. Hence, function pointers will vary per instance of the program. ASLR adds diversity to the
state space of the implementation as each instance of the program now has a unique memory con-
figuration. With memory locations changing at runtime, obtaining implementation information
requires advanced leakage techniques that are much more difficult than if memory locations were
determined at compile time.

3.3 Summary of Security Exploits

Security exploits leverage a vulnerability to transition the implementation FSM to an unintended
state, bypassing the programmer’s intent, then use knowledge of implementation information to
manipulate the implementation FSM and produce unexpected and unwanted behavior. With re-
spect to our framework, we enumerate and classify vulnerabilities by their source, identifying
prominent vulnerabilities originating from language-level undefined semantics, the notional com-
puter model, and the physical processor model, shown in Table 1. We similarly enumerate and
classify implementation information originating from compiler and microarchitectural choices in
Table 2. We also characterize how attackers acquire knowledge of implementation information
needed for exploits, identifying three primary methods with increasing levels of sophistication:
documentation, reverse engineering, and probing. In Section 5, we discuss how prominent attacks
fit within our model of security exploits.
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Fig. 2. Defense Techniques. Vulnerabilities are exploited to transition the victim program from an intended

state (white) to an unintended state (grey). Once outside of the constraints of the intended IFSM, an attacker

can use knowledge of implementation information to subvert security. Avoidance-based protections (b) find

and fix vulnerabilities to remove single transitions to unintended states. Enforcement-based protections (c)

take a complete approach by addressing all transitions of a particular type (e.g., buffer overflows). Finally,

obfuscation techniques (d) conceal implementation information and unintended states, preventing attackers

from effectively and reliably learning enough information to synthesize an exploit.

4 CLASSIFICATION OF DEFENSES

Exploits subvert the security guarantees of an application by using a vulnerability to transition to
an unintended state, then using knowledge of implementation information to produce unexpected
behavior. To combat attacks, defenses address the usage of unintended states by either preventing
the transition to an unintended state (i.e., via removing a vulnerability), or preventing the subver-
sion of security guarantees (i.e., via obfuscating the state space), effectively making it impossible or
useless to acquire unintended states or transitions. Namely, protections either avoid vulnerabilities
by removing their instances in applications, enforce a property of the machine to mitigate vulnera-
bilities, or obfuscate implementation information to make the implementation unpredictable and
thus difficult to manipulate. These categories are not mutually exclusive, as some defenses have
included both enforcement and obfuscation-based techniques in their designs.

In addition to classifying defenses by type, we specify their level of sophistication, quantified
by the strength or coverage of the defense and the phase during which it is employed. Strength
captures the completeness to which a vulnerability is protected or, for obfuscation-based defenses,
the entropy2 of the system. Phase captures when a defense applies in the program’s life cycle.
For defenses introduced during hardware realization, we distinguish between load-time and run-

time defenses. Namely, defenses instantiated at load-time consistently change the state space but
do not effect execution. For example, ASLR [75] is a load-time address, since the program off-
sets are constant for each execution. Runtime defenses take on multiple values during program
execution. Runtime defenses include ASLR variants that re-randomize the program offset during
execution [16, 25, 37, 64, 103]. Due to differing sophistication, two defenses that address the same
class of unintended states or transitions in the same manner may not be equivalent. Below, we
detail these three defense techniques in more detail.

4.1 Avoidance of Vulnerabilities

Designers use testing or formal verification to avoid unintended states and ensure that these states
are not reachable from the program-level. Figure 2(a) illustrates an unprotected system, where

2In this work, we define entropy as the number of key bits used to obfuscate unintended state. We denote obfuscation
techniques as having low entropy if they use key sizes smaller than 32-bits or employ weak XOR ciphers.
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unintended transitions are leveraged to shift the program from an intended state, shown in white,
to an unintended state, shown in grey. Avoidance techniques, Figure 2(b), remove single vulnera-
bilities, eliminating specific unintended transitions in the implementation FSM.

For example, a program with a buffer overflow vulnerability will have a transition to a state
where memory has been corrupted. Avoidance prevents an exploit by removing the single buffer
overflow vulnerability (i.e., the single transition) to the corrupt state, through program testing.
However, program testing is not exhaustive. Avoidance does not address the existence of spatial
memory access errors as a whole. Other vulnerabilities may still exist, allowing for exploits that
abuse vulnerabilities elsewhere in the source code. Rather than relying on program testing, pro-
grammers may employ formal verification to eliminate vulnerabilities. While formal verification
is comprehensive, it currently does not scale to large programs. Additionally, avoidance defenses
are only a durable protection until someone writes more code and introduces a new vulnerability.
Last, since testing and formal verification techniques apply to source code or binaries, the avoid-
ance approach cannot be easily extended to address vulnerabilities in the microarchitecture.

4.2 Enforcement of Program Semantics

Enforcement protections seek to remove all vulnerabilities of a particular type from an application
by prohibiting the existence of a vulnerability altogether. To eliminate vulnerabilities, enforcement
protections detect any uses of the vulnerability, sometimes effectively defining an undefined se-
mantic (i.e., marking it as erroneous). With respect to Figure 2(c), enforcement creates barriers
around parts of the implementation FSM. Rather than removing a single transition, as in the case
of avoidance, enforcement provides significant obstacles to initiating the security exploits by pro-
hibiting all unintended transitions of some type.

4.2.1 Enforcement During High-level Programming. At the programming language level, en-
forcement works to remove all instances of undefined semantics by fully defining these semantics
within the programming language specification. This category includes memory-safe languages,
like Java, that eliminate spatial and temporal memory errors. Program-level enforcement tech-
niques are effective but may not be comprehensive. These techniques cannot secure microarchi-
tectural assets; therefore, they are incomplete due to the nature of the underlying hardware. Addi-
tionally, these languages are sometimes implemented in an unsafe programming language, leaving
possibilities for exploits. While fully defined programming languages are effective, we choose to
focus on defenses that secure C or C++ programs in our study, since these programming languages
are popular and used in many legacy applications. We assume it is less practical to re-implement
these applications in a safe programming language, but we do acknowledge that this possibility
exists.

4.2.2 Enforcement During Hardware Realization. Runtime enforcement protections prohibit vul-
nerabilities and undefined semantics by detecting their use during program execution. For exam-
ple, processors like CHERI [104] enforce spatial memory access errors at runtime by triggering a
security exception whenever these vulnerabilities are detected. Alternatively, Control-flow In-

tegrity (CFI) [4] enforces memory access errors that overwrite jump targets by validating all
control transfers against the intended FSM. CFI is complete with respect to its threat model, but
incurs high performance overheads, motivating coarse-grained variants that proved to be suscep-
tible to attackers [94]. Ultimately, once attacks evolved to no longer rely on the protected asset,
enforcement defenses were easily bypassed. Our case-study in Section 5.1 shows evidence of this
trend.
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4.3 Obfuscation of Implementation Information

Finally, some protections obfuscate implementation information to make knowledge of the imple-
mentation FSM unreliable, either by making it difficult to acquire knowledge of the implemen-
tation or rendering this knowledge useless. With respect to Figure 2(d), an obfuscation defense
conceals or obscures unintended states, increasing the sophistication of information acquisition
needed by attackers to synthesize an exploit. Obfuscation defenses mitigate attacks by making
the implementation information difficult (albeit not impossible) to acquire by making unintended
states unpredictable. Our studies revealed that a majority of attacks require at least some knowl-
edge of implementation information. Thus, obfuscation-based defenses are a promising method to
mitigate a range of security attacks.

4.3.1 Obfuscation During Compilation. Compile-time defenses randomly instantiate a parame-
ter during program compilation. Thus, this parameter has the same value every time a program
runs. However, the same program on another machine may have a different instantiation. These
compiler-based protections are used most commonly for binary obfuscation. For example, Poly-
verse [3] provides a compiler that randomizes register usage, function locations, import tables,
and other targets per compilation. Namely, each binary produced by Polyverse is unique while
preserving the semantics of the intended program. This tool effectively mitigates control-flow
exploits by obfuscating critical attack assets, like code location. Compiler-level obfuscation tech-
niques apply one-time randomization. Thus, although the implementation information is initially
unknown, it can be easily discovered by attackers as this information is constant for each instance
of the program. Therefore, these defenses are the most susceptible to information leakage and
derandomization attacks (Section 5.2). As the time of obfuscation is moved closer to program exe-
cution, discovering a randomized parameter becomes much more difficult.

4.3.2 Obfuscation During Hardware Realization. Defenses during hardware realization ran-
domly instantiate an undefined semantic for each run of a program. Thus, any knowledge the
attacker gains about the implementation of a obfuscated semantic cannot be used to attack an-
other instance of that program. The most common example of load-time randomization defenses
is ASLR [75]. Many control-flow attacks rely on knowledge of code locations. Finding the address
of a target function can be done trivially by disassembling the binary. Yet, with ASLR [75], which
randomizes the location of objects at load time, the address of a target function changes per exe-
cution. Disassembly no longer reveals the true code location, making the attack more difficult. Un-
fortunately, clever probing of shared state can still defeat most one-time randomization defenses,
including 64-bit ASLR, since the randomized information is constant at runtime [17, 36, 42, 90].
These derandomization attacks are discussed in Section 5.2.

4.3.3 Obfuscation During Runtime Execution. Defenses that obfuscate assets at runtime have
appeared in response to derandomization attacks. Within these defenses, the protected asset (e.g.,
data location) takes many forms during a single execution of the program. While these defenses are
still instantiated during hardware realization, we distinguish this from the prior section, because
the value of the randomized information changes multiple times during the program’s lifetime.
For example, Timely Address Space Randomization (TASR) [16] relocates the code segment
during runtime after every system call, effectively obfuscating the location of code objects. This
defense aims to mitigate memory leaks that derandomized traditional ASLR by changing code
location immediately after a leak could occur (via a system call). Other runtime obfuscation de-
fenses change assets at a constant rate, such as every 50 ms, rather than in response to another
event. Generally, these defenses employ higher entropy and more frequent obfuscation schemes
to create a tight time limit that probing techniques must overcome to be successful [25, 37, 103].
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4.4 Summary of Defenses

Defenses mitigate security exploits in three primary ways: (i) Avoidance of vulnerabilities, (ii) En-
forcement of the implementation FSM to prevent vulnerabilities from being leveraged for attacks,
and (iii) Obfuscation of implementation information to prevent attackers from reliably exploiting
the implementation FSM. These approaches are illustrated in Figure 2. With respect to our frame-
work, we classify defenses by the phase during which it is employed, making a distinction between
load-time and runtime defenses within hardware realization, and their coverage of vulnerability
sources. In Section 5, we discuss how prominent mitigation techniques fit within this model.

5 CASE STUDIES OF ATTACK GENEALOGIES

In Section 2, we showed how the program life cycle introduces vulnerabilities in its different phases.
Following this, Section 3 went deeper into how exploits use these vulnerabilities by obtaining im-
plementation information that can then be used to transition the implementation FSM to unin-
tended states. Section 4 then outlined categories of defenses in terms of how they prevented the
attacker from gaining control through transitioning to these unintended states.

In this section, we present a deeper dive into the case studies of four prominent attack ge-
nealogies: control-flow attacks, derandomization attacks, timing side channels, and tran-

sient execution attacks. The first two genealogies compromise program integrity by hijacking
the victim’s control flow or, in the case of derandomization attacks, do so after subverting a
randomization-based defense. The later two genealogies compromise program confidentiality by
using microarchitectural vulnerabilities to leak sensitive information. While we do not consider
availability attacks within our case studies, our framework could be adjusted to capture these ex-
ploits, as discussed in Section 6.1. For each case study, we provide (i) An enumeration of prominent
security exploits and the vulnerability sources they leverage, as related to our program life cycle
framework through Tables 1 and 2, and (ii) An enumeration of defenses classified by their approach
(Figure 2) and the vulnerability sources they protect. These case studies serve to illustrate:

• How the attacks and defenses for each case study fit into the framework of this article.
• How the attacks have evolved over time with increasingly sophisticated acquisition of im-

plementation information by the attackers and the mechanisms used to acquire them.
• How the defenses have evolved over time with an increasing shift from avoidance to en-

forcement and obfuscation-techniques that eliminate access to large parts of the unintended
state space and thus are potentially more durable.

5.1 Case Study: Control-flow Attacks

Control-flow attacks are characterized by attempts to redirect program execution from paths in-
tended by the programmer. Control-flow attacks abuse a memory access error to transition the
implementation FSM to an unintended state, traditionally this state being one that permits unau-
thorized access to the computer. Specifically, these exploits abuse a memory access error to over-
write control data (e.g., a return address or code pointer) with a target of their choosing. To do
this reliably, attackers must carefully craft an attack payload using knowledge of implementation
information. Specifically, all control-flow attacks require knowledge of the data layout to accu-
rately corrupt the intended information. Additional implementation information that is needed is
dependent on the chosen target; code injection necessitates knowledge of the representation of
data pointers and code, whereas code reuse necessitates the location of a target function. We pro-
vide a chronological listing of attacks that have leveraged novel vulnerability sources in Table 3
and prominent control-flow attacks and defenses in Table 4. Below, we detail how these attacks
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Table 3. Novel Vulnerability Sources in Control-flow Attacks

Attacks Vulnerability/Implementation Info. Source Acquisition

1996 Stack Smashing (Stack Buffer Overflow) [8] Memory Access Error (Corrupt Code Ptr.) Lang-level Und. Sem. —

Order of Data (Stack) Compiler Choices doc, engr

Location of Data (Stack) Compiler Choices engr

Representation of Code Compiler Choices doc

Representation of Code Pointers Compiler Choices doc

1997 Return-into-libc Location of Code Compiler Choices engr

1999 Heap Smashing (Heap Overflows) [98] Order of Data (Heap) Compiler choices doc, engr

2001 Heap Spray [40] Location of Data (Heap) Compiler Choices engr

2016 Data-oriented Programming [46] Memory Access Error (Corrupt Data) Lang-level Und. Sem. —

Representation of Data Pointers Compiler Choices doc

We enumerate control-flow attacks that have leveraged a novel vulnerability or piece of implementation information (i.e.,
one that has not been used previously). We classify these vulnerability sources by their source and method of acquisition.

Table 4. Chronological Ordering of Control-flow Attacks and Defenses

We enumerate the vulnerabilities and implementation information leveraged/protected by prominent control-flow
attacks and defenses. Each asset is either leveraged/protected fully ( ), partially ( ), or not at all ( ). For space driven
brevity, we adopt the following abbreviations: memory access error (MAE), code pointer (CP), and data pointer (DP).
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have evolved, from early work focused on exploiting the stack, to advanced attacks that leveraged
existing code and non-control data to redirect execution.

5.1.1 Code Injection. The entire class of control-flow exploits originated from the first stack-
smashing attack in the late 1990s [8]. Within this exploit, an attacker leverages a buffer over-
flow vulnerability on the stack to influence unintended state in two ways: to inject malicious
code into the data segment, and to overwrite the return address with a pointer to the injected
code. The target processor proceeds from this corrupt state, popping the return address and ex-
ecuting the malicious code to conclude the exploit. To craft a payload to synthesize this exploit
successfully, the attacker requires the following knowledge of implementation information from
compilation: (i) The order of data on the stack (to overflow the buffer), (ii) The representation
of code (to inject code), (iii) The location of data on the stack (to redirect to injected code), and
(iv) The representation of code pointers (to overwrite the return address). Additionally, unintended
states in the implementation FSM must permit the execution of stack data. Attackers can de-
rive knowledge of this implementation information from documentation of the system and target
processor.

Two novel protections were promptly adopted to prevent stack smashing attacks. In 1997, the
non-executable stack patch forbid the execution of data on the stack, effectively enforcing intended
states in the implementation FSM after a memory access error occurs [91]. A year later, stack ca-
naries leveraged obfuscation to detect linear buffer overflows by asserting that a secret value on the
stack had not been corrupted during runtime [28]. While these prominent defenses protected the
call stack, they were not comprehensive of all memory. Attackers quickly subverted these defenses
by exploiting buffer overflows and performing code injection within the heap [40, 98]. Shortly af-
terward, the protections of the non-executable stack expanded to all data to fully eradicate code
injection. Specifically, Intel introduced the no-execute bit (NX-bit) [87] to its X86 instruction-set
architecture to forbid data execution, effectively preventing these unintended states from being en-
tered due to memory corruption. In response, attackers adapted their techniques to exploit other
unintended states and transitions still present on the target machine.

5.1.2 Code Reuse. With the demise of code injection, exploits morphed to reuse existing code
on the victim device. Code reuse attacks originated from return-into-libc [92], a variant of the stack
smashing exploit that redirects program execution to a library function. This attack is identical to
the stack smashing exploit above except that, rather than requiring knowledge of data location and
code representation, knowledge of code location is leveraged to redirect execution to an unintended
library function. While library functions do exist in the implementation, the states used in return-
into-libc are unintended, because this specific stack layout and execution pattern is not permitted
by the intended FSM.

A decade later, Return-oriented Programming (ROP) [81] revisited code reuse attacks,
exploiting existing code at a finer granularity. Rather than executing a single library function,
ROP stitched together short code gadgets to form arbitrary programs that were just as expressive
as what code injection achieved. This attack required identical implementation information as
return-into-libc, relying heavily on code contents and code location to identify gadgets. Early
enforcement-based protections profiled the call patterns of ROP attacks, triggering security
exceptions when malicious execution was detected [26, 74]. However, these defenses were easily
subverted by attacks that used call patterns outside of the assembled profile, for example, by execut-
ing gadgets that ended in jump instructions rather than returns [18, 24]. Other defenses attempted
to fortify the code space, such as by preventing memory access errors from corrupting return
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addresses (discussed below). In response, ROP evolved to exploit data. Data-oriented Pro-

gramming (DOP) [46] manipulates non-control data, instead of function pointers, to influence
indirect control flow and produce unexpected behavior. Hence, rather than requiring knowledge
of the location of code or representation of code pointers, DOP solely relies on implementation
information related to data and data pointers.

5.1.3 Defenses Against Control-flow Attacks. As shown in Table 4, defenses for control-flow
attacks primarily fall into two categories: (i) Obfuscation of critical implementation information
(e.g., location of code/data, representation of code, and representation of code/data pointers), and
(ii) Enforcement of memory access errors. Obfuscation-based mitigations looked to fortify access
to data and code locations, and the representation of pointers and code. Early obfuscation-based
defenses aimed to obfuscate memory layout to prevent attackers from crafting pointers to injected
code or existing code gadgets. ASLR [75] shifts the location of the stack, heap, and code in memory.
Since this technique randomizes once, sophisticated implementation acquisition methods can be
used to locate the obfuscated segments at runtime. This arms race led to an entire new genealogy
of attacks, termed derandomization attacks, detailed in Section 5.2. Finer-grained randomization
techniques [44, 53, 73] and protections that re-randomize at runtime [16] have been developed to
combat these derandomization attempts. Obfuscation defenses also randomized the representation

of code at either compile-time or load-time to thwart code injection and gadget discovery [14, 50,
72, 88]. Other techniques fortified code pointers by encrypting the representation of pointers [27].

Other defenses employ enforcement techniques to detect memory access errors and thwart
control-flow attacks. Control-flow Integrity (CFI) [4] analyzes the trusted program for all possi-
ble, programmer-intended execution paths in the control-flow graph and restricts execution to this
graph during runtime, effectively preventing memory access errors by restricting the acceptable
values of code pointers. Although CFI is a robust enforcement mechanism, it comes with high over-
heads. Thus, adopted CFI implementations only trace a subset of control-flow edges [31, 51, 67],
leaving them vulnerable to subversion [23, 35, 39, 94]. Subsequent defenses continued to fortify
control data. Code Pointer Integrity [60] uses enforcement to stop memory access errors from
influencing code pointers by isolating pointers in a protective memory region. Control-data Isola-
tion [10] took a subtractive approach to achieve the same goal, removing all indirect control-flow
instructions that can be influenced by user data (i.e., indirect jumps, calls, and returns). Other pro-
tections like CHERI [104] and REST [89] employed runtime mechanisms to detect memory access
errors quickly.

5.2 Case Study: Derandomization Attacks

As we saw in Section 5.1, control-flow attacks leverage knowledge of compiler choices related to
code and data layout to craft attack payloads. Mitigations have focused on obfuscating this critical
implementation information to prevent attacks. ASLR [75] is one of few widely adopted random-
ization defenses. ASLR obfuscates memory layout at load-time, changing the position of the data
and code segments to hide location information. However, while ASLR is effective, sophisticated
implementation acquisition methods can be used to gain knowledge of the randomized implemen-
tation at runtime and subvert the defense. Thus, exploits have prevailed in the face of ASLR by
using these derandomization tactics. This genealogy expands upon control-flow attacks and de-
fenses to explore the advanced methods of implementation information acquisition used to evade
obfuscation protections. We provide a chronological listing of derandomization attacks that have
leveraged novel vulnerability sources in Table 5 and prominent attacks and defenses in Table 6. Be-
low, we detail how these derandomization attacks have evolved, from exploiting memory leakage
to advanced probing tactics that leverage timing side-channels.
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Table 5. Novel Vulnerability Sources and Acquisition Methods in Derandomization Attacks

Attacks Vulnerability/Implementation Info. Source Acquisition

2013 Just-in-time Code Reuse (JIT-ROP) [90] Location of Code OS Choices engr*

2014 Blind ROP [17] Location of Code OS Choices probe*

2016 Crash-resistant-oriented Programming [38] Location of Code OS Choices engr*

We enumerate derandomization attacks that have leveraged a novel vulnerability source or method of implementation
information acquisition (denoted by *). We classify these assets by their source and method of acquisition. In this
genealogy, code location originates from OS Choices, because ASLR [75] is in place.

Table 6. Chronological Ordering of Derandomization Attacks and Defenses

We enumerate the vulnerabilities and implementation information leveraged/protected by prominent attacks and
defenses. Each asset is either leveraged/protected fully ( ), partially ( ), or not at all ( ). For space driven brevity,
we adopt the following abbreviations: memory access error (MAE), code pointer (CP), and data pointer (DP).

5.2.1 Disclosing Code Location via Memory Leaks. Attacks responded to the adoption of ASLR
by derandomizing code location before synthesizing an exploit. Initial implementations of ASLR on
32-bit systems had low entropy and were trivially defeated by control-flow attacks that brute-force
guessed the randomized memory layout [85]. With the deployment of ASLR on 64-bit systems, at-
tacks needed more sophisticated derandomization methods to overcome the increased entropy.
Exploits began to use the limited coverage of ASLR to subvert the defense. In particular, while
ASLR randomizes the location of objects, it does not randomize the distance between objects in
a particular segment. Thus, given a leaked pointer and knowledge of relative addressing, attack-
ers can easily derandomize the address space. Variants of ROP integrated these derandomization
techniques to subvert ASLR prior to an attack. JIT-ROP [90] uses a memory disclosure vulnerability
to leak the absolute location of a code object, then uses this address to read code pages and follow
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direct jumps to discover other parts of the code segment. Once enough of the code contents and lo-
cation is known, an ROP payload is synthesized using just-in-time compilation. In addition to the
assets leveraged by ROP [81] (discussed in Table 4), JIT-ROP uses knowledge of the representation

of code to read code pages to uncover the locations of code gadgets at runtime.
To mitigate JIT-ROP, Oxymoron obfuscated direct branch targets to prevent code pages from

leaking code locations [12]. Attacks that used indirect branch targets to infer code locations by-
passed this protection [32]. Subsequent work extended randomization to all jump targets [32],
adding a layer of indirection between code pointers and code location to confuse attackers. Other
JIT-ROP mitigations worked to make code pages unreadable by enforcing different permissions for
code pointers and data pointers (e.g., load/store operations can only use data pointers) [11]. These
randomization and enforcement techniques have been combined in Readactor [29] to efficiently
mitigate both direct and indirect forms of code page discovery with low performance overheads.

With the rise of new protections, attacks turned to more advanced acquisition techniques to
learn code locations. Crash-resistant-oriented Programming [38] demonstrated techniques to dis-
close code pointers without crashing the victim process, allowing this attack to sidestep enforce-
ment protections that triggered exceptions. To sidestep protections that prevented reading code
pages, Blind-ROP [17] employed sophisticated probing techniques to learn pointer values. Specif-
ically, Blind-ROP used a buffer overflow vulnerability to repeatedly overwrite a single byte of the
return address on the stack, using the execution of the child process as an oracle to determine
if the guessed byte was correct. Repeated probing of subsequent bytes disclosed the complete re-
turn address, derandomizing the ASLR offset and enabling a ROP attack. Some derandomization
techniques leveraged timing side-channels to recover the ASLR offset. We discuss these attacks
in Section 5.3.4 as they leverage microarchitectural vulnerabilities that are common to the timing
side-channel attack genealogy.

5.2.2 Defenses with Re-Randomization. In response to derandomization attacks, defenses have
employed re-randomization of critical implementation information, including re-randomization
of the location and order of code/data objects, the representation of code, and the representation
of pointers. Although the re-randomization of defenses provably adds one bit of entropy to ex-
isting systems [85], recent work has relied heavily on this technique to mitigate derandomization
attacks. Re-randomization elevates the difficulty of obtaining implementation information by mak-
ing it transient, forcing runtime acquisition techniques to learn and exploit information before it
changes. New ASLR-variants re-randomized the location of objects dynamically, such as after every
kernel I/O operation (TASR [16]) or processes fork (RuntimeASLR [64]). Both approaches serve to
destroy leaked pointers before they are injected back into the system. Periodic re-randomization
has also proven valuable. Morpheus [37] reduces performance overheads by leveraging hardware
support to re-randomize memory during runtime, but only obfuscates the absolute location of
code and data. Remix [25] obfuscates relative addressing in the code segment by reordering basic
blocks within their respective functions, but does not randomize the location of function entries.
Conversely, Shuffler [103] obfuscates the relative distance between functions by reordering them
at runtime, but does not address intra-function relative distance. Smokestack [7] focuses solely
on data, randomizing the stack layout to mitigate memory access errors. Ultimately, runtime re-
randomization introduces chaos for attackers attempting to execute code gadgets.

5.3 Case Study: Timing Side-channel Attacks

Timing side-channel attacks leverage implementation information introduced during hardware re-
alization to leak confidential data. These attacks abuse a side channel-a vulnerability originating
from the physical processor model where information propagates to externally observable states
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in an unintended manner. These observable states include shared state (e.g., cache contents) and
readable auxiliary state (e.g., program timing). Attackers must have intimate knowledge of code
contents to decipher how side channels reveal program secrets during execution. Furthermore,
a significant number of timing side-channel attacks directly interfere with the victim program,
leveraging sharing-dependent program timing to strategically reveal confidential information. We
provide a chronological listing of attacks that leverage novel vulnerability sources in Table 7, as
well as prominent attacks and defenses in Table 8. Below, we detail how these attacks have evolved,
from early work that exploited program timing, to advanced attacks that leveraged external inter-
ference to leak secret information. We also discuss timing side-channel attacks that have sought
to derandomize ASLR rather than leak cryptographic keys.

5.3.1 Timing Secret-dependent Operations. In 1996, Kocher observed that the control flow of
cryptographic algorithms was key-dependent. Bits of the secret key influenced readable auxiliary
states (e.g., program timing) in the implementation, enabling an observer with knowledge of the
algorithm to recover these key bits. While the cryptographic primitives were sound, the naive
source code implementations proved to be dangerous due to unintended fluctuations in execution
time. Kocher demonstrated that secret key information could be obtained by feeding the program
carefully designed inputs and measuring the execution time of the algorithm [58]. To prevent this
exploit, constant-time algorithms with key-independent control flow were developed, effectively
avoiding side channels in the implementation. In many cases, it was up to the programmer to
develop constant-time source code and assure that compilation and hardware realization upheld
their intent. This task was incredibly challenging as it required significant expertise to model
the complexities of the compiler and hardware in one’s notional computer model. Other defenses
sought to automate this process [70]. While many constant-time implementations were developed,
they were fragile as any small fluctuations in execution could break them.

Although cryptographic algorithms adopted data-independent control flow, some performed
key-dependent memory accesses to critical data structures (e.g., substitution boxes), leaving them
vulnerable to attack. Nearly ten years after Kocher’s original work, Bernstein published a tim-
ing side-channel attack on AES that instead measured timing variations of memory accesses using
knowledge of microarchitectural structures [15]. Bernstein observed capacity misses during key-
dependent table lookups to infer which table entries were accessed. By iteratively choosing pro-
gram input and observing memory composition via timing information, he was able to recover the
secret key. This attack specifically observed differences in the timing of memory accesses due to
internal interference in the victim program. Bernstein’s attack inspired future side-channel exploits
that observed timing differences caused by external interference provoked by the attacker.

5.3.2 Timing Memory Accesses. As few algorithms exhibited internal interference, attacks be-
gan to instigate timing differences by directly interfering with the victim program. This trend
was shaped by widespread support for simultaneous multithreading (SMT) [95], which caused
threads to share all microarchitecture structures in a processor. Thus, attackers could modify
shared state in the implementation FSM by leveraging knowledge of microarchitectural sharing
and the location of critical data. Then, attackers could use sharing-dependent program timing to ob-
serve the result of this external interference in one of two ways: via timing-based or access-based
attacks.

In timing-based attacks, attackers modify state shared between the victim’s and attacker’s
implementation FSM, then time the victim’s execution to see the effects of their malicious inter-
ference. These attacks specifically exploit readable auxiliary state in the victim’s implementation
FSM to leak secrets. In access-based attacks, attackers similarly influence shared state, then allow
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Table 7. Novel Vulnerability Sources in Timing Side-channel Attacks

Attacks Vulnerability/Implementation Info. Source Acquisition

1996 Kocher’s Timing Attacks... [58] Side Channels Phys. Proc. Model –

Timing of Operations (Execution Time) Microarch. Choices probe

2005 Bernstein’s Timing Attack on AES [15] Microarch. Sharing (L1 Cache) Microarch. Choices engr, probe

Timing of Operations (Mem. Accesses) Microarch. Choices probe

Cache Missing, Prime+Probe, Evict+Time [71, 77] Sharing-dependent Program Timing Phys. Proc. Model –

2007 BTB Side Channel [6] Microarch. Sharing (BTB) Microarch. Choices engr, probe

I-Cache Side Channel [5] Microarch. Sharing (I Cache) Microarch. Choices engr, probe

2014 Flush+Reload [107] Microarch. Sharing (LLC) Microarch. Choices engr, probe

We enumerate timing side-channel attacks that leverage a novel vulnerability or piece of implementation information (i.e.,
one that has not been used previously). We classify these vulnerability sources by their source and method of acquisition.

Table 8. Chronological Ordering of Timing Side-Channel Attacks and Defenses

We enumerate the vulnerabilities and implementation information leveraged/protected by prominent side channel
attacks and defenses. Each asset is either leveraged/protected fully ( ), partially ( ), or not at all ( ). For space
driven brevity, we adopt the following abbreviation: sharing-dependent (SD).

the victim program to execute. However, the attacker does not observe the victim’s execution
via auxiliary state. Rather, the attacker executes and times their own program (i.e., the attacker’s
implementation FSM) to see how the victim has modified shared state. Because the attacker
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measures their own memory accesses, they can obtain timing information at a much finer
granularity and higher fidelity than observing the victim.

In 2005, Percival and Osvik et al. independently formalized access-based attacks on RSA and
AES that leveraged sharing in the L1 cache [71, 77]. These exploits first primed the cache by fill-
ing it with attacker data, essentially providing attackers with complete knowledge of the shared
cache state. Afterwards, attackers surrendered execution to the victim process. The victim process
loads confidential data into the cache, modifying the shared state in the attacker’s implementation
FSM. Once the attacker resumes control of the processor, they can recover these traces by timing
their own memory accesses to infer shared state. Slow accesses signified a conflict miss, revealing
that the victim program accessed data mapped to the same cache block. By compiling these ac-
cess patterns, the secret key was successfully recovered. Osvik published a second attack, termed
Evict+Time, that took a timing-based approach to break AES. Rather than probing memory and
measuring the time of each access, the victim’s overall execution time was measured after the
cache was evicted. Slowed execution signified that the cryptographic algorithm used the evicted
data, revealing the memory access patterns of the algorithm.

5.3.3 Beyond the L1 Cache. Attackers continued to uncover alternative side channels to ob-
serve a victim program’s execution. Given implementation information about microarchitectural

sharing in the Branch Target Buffer (BTB), Aciicmez et. al observed the branching patterns of a
cryptographic process [6]. Aciicmez also extended this technique to the I-Cache to similarly mon-
itor the control flow of the victim process [5]. In both cases, the attacker was able to derive the
outcome of a key-dependent branch condition, leaking information about the secret key. Timing
side-channel exploits also expanded into lower levels of the memory hierarchy. A new cache attack
called Flush+Reload [107] achieved high resolution in the last-level cache (LLC) by exploiting
shared memory between two cores. This technique can be used to break process isolation and
trace memory accesses of a victim. More importantly, this exploit broadened the attack surface
from processes running on the same core to processes running on separate cores. Thus, disabling
SMT could not stop this attack. Subsequent work demonstrated that Prime+Probe is also practical
on the LLC [63].

5.3.4 Side-channel-based Derandomization. Timing side-channel attacks have also been used
to derandomize ASLR [75]. In 2013, the I-Cache side-channel attack [5] was used to dismantle
kernel-space ASLR [47]. Collisions in the I-Cache revealed the address of the system call handler
and, through repetition, this information was combined to uncover bits of the KASLR offset. Jump-
over-ASLR exploited a timing-side channel in the BTB to monitor collisions between the attacker’s
branch instructions and the victim program, eventually derandomizing the lower bits of ASLR [36].
The following year, AnC used Evict+Time [71] to observe the page table walk of the memory
management unit. Ultimately, this attack was able to derive 28 bits of the ASLR offset in only 150
seconds [42]. This attack combined traditional side channels with a unique probing technique to
recover more bits of ASLR than previous exploits in a short amount of time.

5.3.5 Defenses for Timing Side Channels. As shown in Table 8, defenses for timing side-channel
attacks have broadly taken one of the following approaches: (i) Randomization of microarchitec-
tural sharing, (ii) Enforcement of microarchitectural sharing/sharing-dependent behaviors via the
partitioning of shared structures, (iii) Randomization of program timing via adding noise to tim-
ing infrastructures, or (iv) Avoidance/enforcement of side channels via the use of constant-time
or data-oblivious programs. Novel cache architectures obfuscate microarchitectural sharing by
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randomizing memory mappings within shared structures [100, 101]. CEASER [78] and Skewed-
CEASER [79] recently further expanded obfuscation of sharing by using encrypted addresses for
cache indexing. These two techniques made it improbable to craft an eviction set by dynamically
remapping the caches with high entropy and were applicable for the LLC.

Other protections use enforcement to protect microarchitectural sharing and sharing-dependent
program timing by prohibiting external interference in the cache. These mitigations include PL-
Cache [100], which proposed secure cache replacement protocols that prevented confidential data
from being evicted by other processes. Subsequent protections continued to address inter-process
conflicts. Cache Allocation Technology (CAT) [43] dynamically partitioned the LLC, enforc-
ing strict bounds between two processes to mitigate Flush+Reload attacks. This defense was ex-
tended to all set associative structures, including caches, in Dynamically Allocated Way Guard

(DAWG) [55]. Recent work has revisited mitigating side channels via constant-time programs,
instead enforcing these guarantees within the instruction-set architecture directly. In particular,
Data-oblivious ISA Extensions (OISA) [108] detects and prevents confidential data from prop-
agating to side channels at runtime, providing programmers with a direct mechanism to write
constant-time code.

5.4 Case Study: Transient Execution Attacks

A particularly dominant class of timing side-channels exfiltrate secrets by observing the side-
effects of transient instructions that operate on sensitive information. These attacks abuse mis-

peculation-the spurious execution of an instruction that is eventually deemed unnecessary due
to the emergence of a misprediction or fault. When mispeculation occurs, modern processors
squash all in-flight instructions and revert the processor state. However, not all state is reverted.
Residues in the caches and other shared microarchitectural structures remain, as these states do
not affect program correctness. This oversight establishes a side channel for third parties with ad-
equate microarchitectural knowledge to observe program execution. Transient execution attacks
are broadly categorized into two classes: those that cause mispredictions by polluting the contents
of the branch predictor, and those that leverage faults to indirectly squash instructions [22]. We
provide a chronological listing of attacks that have leveraged novel vulnerability sources in Ta-
ble 9 and prominent transient execution attacks and defenses in Table 10. Below, we detail how
this important new class of attacks exploits microarchitectural design choices in sophisticated
ways.

5.4.1 Prediction-based Attacks. Spectre [57] directly influences the misprediction of instruc-
tions by exploiting sharing-dependent program execution in the BTB. Leveraging knowledge
of microarchitectural sharing, the attacker trains the BTB to poison the shared predictor and
force the misprediction of a specific branch in the victim’s program. In Spectre V1, the victim
mispredicts a conditional branch that makes a secret-dependent memory access, leaving residues
in the cache. The evidence of this transient execution is later recovered by the attacker via either
Prime+Probe [77] or Flush+Reload [107]. We show the vulnerabilities and implementation in-
formation leveraged by Spectre V1 in Table 10, which is comprised of the aforementioned assets,
as well as the location of the spectre gadget and the assets used by Prime+Probe/Flush+Reload.
Spectre V2 forces a misprediction on an indirect branch, enabling the attacker to redirect program
execution to any unintended code of their choosing. This exploitation mimics ROP [81] and would
require a similar set of attack assets.

Mispeculation provides attackers an avenue to directly influence the execution of a vic-
tim program without requiring program-level vulnerabilities. However, because mispeculated
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Table 9. Novel Vulnerability Sources in Transient Execution Attacks

Attacks Vulnerability/Implementation Info. Source Acquisition

2018 Spectre [57] Mispeculation (Prediction-based) Phys. Proc. Model –

Sharing-dependent Prog. Exec. (BTB) Phys. Proc. Model –

Meltdown [62] Mispeculation (Fault-based) Phys. Proc. Model –

Foreshadow [21] Microarch. Sharing (SGX Cache) Microarch. Choices engr, probe

2019 RIDL [96], Fallout [69] Microarch. Sharing (Store Buffer) Microarch. Choices engr, probe

We enumerate transient execution attacks that have leveraged a novel vulnerability or piece of implementation
information (i.e., one that has not been used previously). We classify these vulnerability sources by their source and
method of acquisition.

Table 10. Chronological Ordering of Transient Execution Attacks and Defenses

We enumerate the vulnerabilities and implementation information leveraged/protected by prominent transient
execution attacks and defenses. Each asset is either leveraged/protected fully ( ), partially ( ), or not at all ( ). For
space driven brevity, we adopt the following abbreviation: sharing-dependent (SD).

instructions are eventually squashed, this hardware-level vulnerability can only be used to execute
short instruction sequences. Spectre-style exploits have since expanded to other microarchitectural
structures, including the pattern history table, return stack buffer, and memory disambiguation
logic [45, 56, 59, 65].

5.4.2 Fault-based Attacks. Rather than influencing the misprediction of an instruction,
Meltdown-style attacks rely on faulty operations that squash transient instructions [22]. Melt-
down abuses the fact that memory permissions in specific Intel processors are not checked until
instruction commitment [62]. Thus, memory accesses and other invalid operations are performed
long before they are deemed faulty. Meltdown leverages this property to leak kernel memory by
performing transient kernel reads, which are later recovered through cache timing side-channels
like Flush+Reload [107]. Because Meltdown does not influence program execution via shared
state, it does not leverage sharing-dependent program execution like Spectre [57].

Foreshadow [21] similarly exploited delayed permissions checks to subvert Intel SGX [68].
Specifically, Foreshadow makes a transient access to enclave memory during an address
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translation with a faulty page-table lookup. By using timing side-channels to observe the cache
state after the fault, attackers were able to derive SGX enclave secrets. Fault-based attacks
expanded to include variants that raise exceptions due to accesses to system registers [2] or lazy
floating-point register state switching [93], and have extended into the store buffer [69, 96].

5.4.3 Defenses for Transient Execution Attacks. To combat transient execution attacks, defenses
have focused on addressing the hardware-level constructs that permit the exploit. Specifically,
defenses have broadly taken two approaches: (i) Limiting the speculative execution of instructions,
classified as either avoidance or enforcement of mispeculation, or (ii) Eliminating the side-effects
of transient instructions, classified as the enforcement of mispeculation and side channels.

Retpoline [41, 48] uses software enforcement techniques to prevent the speculative execution
of vulnerable instructions. Specifically, Retpoline uses a return trampoline to prevent the proces-
sor from speculating on an indirect jump, thus prohibiting attackers from steering code during
speculation. Other mitigations address the microarchitectural side-effects left by transient execu-
tion, preventing this unintended information from propagating to shared structures. We classify
this technique as the enforcement of mispeculation and side-channels, as it prevents sensitive
information from propagating to unintended outlets (i.e., side channel vulnerability) during mis-
peculation. InvisiSpec [105] prevents transient loads from propagating to the cache state, whereas
similar defenses monitor and restrict the propagation of speculative data from reaching any known
covert channels [102, 109]. Other protections try to address covert channels through enforcement
and partitioning [52, 55, 83]. Rather than preventing the propagation of sensitive information,
CleanupSpec [82] undoes microarchitectural residues that occur during mispeculation, essentially
reverting to the same state in the implementation FSM before mispeculation. Thus, even though
transient execution occurs, the processor truly reverts to the previous state, preventing attackers
from exfiltrating secrets.

6 CONCLUDING THOUGHTS

In this systematization-of-knowledge article, we examined how vulnerability sources are intro-
duced throughout the program life cycle, and how these sources, along with implementation infor-
mation, are used by attackers to construct security exploits. These vulnerability sources arise from
programming, compilation, and hardware realization, and introduce states in the implementation
FSM that are unintended relative to the programmer’s intended FSM. Security exploits leverage
these sources to transition the implementation FSM to an unintended state to carry out an attack.
Further, through the case studies of four important genealogies, we saw the evolution and increas-
ing sophistication of the implementation information used for attacks and the methods to acquire
this information, alongside a corresponding increase in the sophistication of defenses. We con-
clude by drawing on our framework and genealogies to point to key trends in defenses that hold
increasing promise for the future.

6.1 Uses and Limitations of this Framework

This article aims to address the significant challenge of understanding the large space of security ex-
ploits and defenses by presenting an organization of security vulnerabilities as they arise through-
out the program life cycle. This framework is designed with the purpose of conceptual modeling to
aid researchers in developing more durable defenses that protect against wider classes of attacks.
Specifically, this framework provides researchers a way to organize vulnerability sources across
phases and sources within the program life cycle, identify similarities across different exploits, and
model the ways in which defenses address these vulnerability sources. We do not intend for this
framework to be used to model security attacks and defenses using design exploration tools. In
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fact, given the complexity of the state space of our proposed FSM framework, such modeling may
very well be infeasible and thus is not the intent of this work.

As presented in this article, the program life cycle framework captures security exploits that
compromise program confidentiality or integrity. Availability exploits, such as denial-of-service
attacks, are beyond the scope of our current framework. However, some denial-of-service attacks
are easy to consider in this framework. For example, a denial-of-service attack that uses a mali-
cious packet to crash a program is clearly transitioning the program into an unintended state, in
alignment with our proposed framework. Other availability exploits are more complex and require
additional consideration, such as those that flood a server with packets to oversaturate server ca-
pacity and hinder performance. While the results of such an attack are also unintended by the
programmer, they require more careful consideration of the programmer’s intended FSM to fully
model how these exploits violate unintended states and transitions.

Finally, our framework uses auxiliary state (Section 2.3.3) to capture time and occurrence count,
enabling us to model analog effects. However, auxiliary state is hard to discover in advance of
deploying a system, as these effects are not intentional. Rather, these states are often determined
post-facto, only after their value has been demonstrated. This makes it difficult to apply this mod-
eling ability to the practical identification of vulnerability sources and defenses.

6.2 Trends and Suggestions for Defenses

Mitigating attacks through the enforcement of vulnerabilities remains a popular approach. Cer-
tainly, many solutions exist to enforce memory safety through the detection of memory access
errors [60, 104]. Additionally, the enforcement of memory permissions has seen steady advance-
ments, from the NX-bit stack protections [91], to x86 SMAP and SMEP [49], and more recently
Intel SGX [68]. Remaining program-level vulnerabilities (e.g., uninitialized values and integer over-
flow) can be detected using generalized debugging tools, like as UBSan [9] and ASan [84]. How-
ever, unless these enforcement mechanisms are supported by specialized hardware, performance
overheads become high, leaving most code running in the wild with few enforcement protections
against the exercising vulnerabilities.

For obfuscation defenses, two trends have emerged: (i) The movement toward the randomization
of multiple pieces of implementation information, and (ii) The application of finer-grained random-
ization defenses. Initially, randomization was reserved for the location of objects (e.g., ASLR [75]).
But, over time, randomization defenses have expanded to include the representation of code [14],
representation of pointers [27, 37], microarchitectural sharing [78], timing of operations [66], rel-
ative location of functions [103], and the order of stack variables [7]. These techniques garner
broad appeal, since they (at least partially) address a wide range of attacks that utilize the ran-
domized implementation information. Furthermore, defenses have also trended toward more fine-
grained, runtime randomization of implementation information. In its most course-grained form,
randomization is applied at compile-time or load-time. Thus, long periods are available to probe
these randomized systems, giving attackers a foothold to discover the obfuscated implementation
information. Derandomization attacks of this nature have been extremely successful (e.g., Blind
ROP [17] and AnC [42]). Consequently, defenses have begun to aggressively re-randomize during
execution in hopes that this approach will defeat malicious attempts to acquire implementation
information at runtime.

6.2.1 Cost Trade-offs. While defenses may appear promising or protect against a wide array of
vulnerability sources, the costs of these defenses must also be considered. In this context, cost may
refer to runtime performance overheads, complexity of software modifications, complexity of hard-
ware modifications, silicon area and power overheads, cost to the programmer to use the defense,
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and so on. Existing security solutions that are deployed in practice are those that presented the best
cost trade-offs at that time, otherwise they would have been dismissed. For example, ASLR [75]
was one of the first widely deployed control-flow defenses and had very low cost. However, ASLR
has since proven to be non-durable, as many exploits have prevailed despite it by leveraging ad-
vanced derandomization attacks (Section 5.2). Many ASLR variants have since been proposed, but
none have been widely deployed.

Some security solutions are known but deemed impractical due to their high costs, including
some discussed in this article (e.g., constant-time execution or complete isolation for timing side
channels). It is possible that these high-cost defenses will never be deployed, or will only be de-
ployed when there is an attack so pervasive that going without them is intolerable. It is often the
case that security can be sacrificed to lessen costs, or that certain costs can be used to alleviate
others. For example, modified computer hardware is often leveraged to reduce the performance
overheads of runtime defenses [37]. In this case, hardware complexity and silicon area and power
overheads are increased to lessen performance overheads. The framework proposed in this arti-
cle serves to aid the development of efficient, comprehensive defenses by modeling similarities
in vulnerability sources across prominent security attacks. To assess the cost trade-offs of new
defenses, it is also critical to understand what threat model is necessary and what costs are tol-
erable to developers and consumers. Both are incredibly challenging tasks that warrant future
work.

6.2.2 Suggestions for Future Defenses. Our study reveals two key properties that can inform
how to best approach secure system design in the future: (i) A small amount of implementation
information is used widely across numerous security attacks, and (ii) The classes of vulnerabil-
ities grow very slowly, with only a few new vulnerabilities introduced per decade. Given these
observations, defenses that focus on enforcing or obfuscating multiple pieces of implementation
information have the potential to be both effective and durable, as broad swaths of the attack land-
scape will be disrupted. In contrast, avoidance defenses that focus on patching vulnerabilities will
become increasingly ineffective and non-durable. Their ineffectiveness arises from the challenge
of finding all vulnerabilities, which requires formal methods that do not scale with large systems.
Additionally, the introduction of new code can introduce a new vulnerability, and no strategies
exist for finding yet-undiscovered vulnerabilities.

While both enforcement and obfuscation are appropriate techniques for protecting vulnerabil-
ities, there is no clear winning approach in our mind. Enforcement defenses can be made sound
and complete, unlike obfuscation defenses, which provide only probabilistic security guarantees.
Yet, enforcement defenses may conflict with non-malicious programs that use undefined seman-
tics [104], while obfuscation techniques can often comply with these requirements [37]. Perhaps
the defense approach that emerges predominantly will depend on the efficiency of the defense and
to what extent they impact programmers that utilize these machines.

For vulnerabilities introduced during hardware realization, protections have focused largely on
randomization-based techniques. We see randomization defenses trending toward higher-entropy
implementations to increase their overall strength against brute-force and side-channel attacks.
As detailed in Section 5.2, derandomization attacks have progressed to the point where random-
ized semantics can be recovered with mere minutes of probing. Higher entropy protections will
diminish the likelihood of guessing randomized information and, while derandomization attacks
are still be possible, they will take much more time. Thus, combining high-entropy defenses with
fast rates of re-randomization will undercut the expected time of derandomization attacks and
ensure that these systems can never be successfully penetrated through accessing implementation
information.
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Finally, our framework highlights the importance of modeling auxiliary states, such as observ-
able timing or occurrence counters, to capture analog effects that affect visible state, like charge
loss. Thus far, such auxiliary states have been determined post-facto, only after their value has been
demonstrated. An important defense strategy would be to anticipate auxiliary states that could be
exploited in the future-a very hard problem-but one that must be tackled in this ever-evolving
arms race between attacks and defenses.
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