
GhostRider: A Hardware-Software System
for Memory Trace Oblivious Computation

Chang Liu,† Austin Harris,‡ Martin Maas,∗ Michael Hicks,† Mohit Tiwari,‡ and Elaine Shi†
† University of Maryland, College Park ‡ University of Texas at Austin ∗ University of California, Berkeley

Abstract
This paper presents a new, co-designed compiler and archi-
tecture called GhostRider for supporting privacy preserv-
ing computation in the cloud. GhostRider ensures all pro-
grams satisfy a property called memory-trace obliviousness
(MTO): Even an adversary that observes memory, bus traf-
fic, and access times while the program executes can learn
nothing about the program’s sensitive inputs and outputs.
One way to achieve MTO is to employ Oblivious RAM
(ORAM), allocating all code and data in a single ORAM
bank, and to also disable caches or fix the rate of mem-
ory traffic. This baseline approach can be inefficient, and so
GhostRider’s compiler uses a program analysis to do better,
allocating data to non-oblivious, encrypted RAM (ERAM)
and employing a scratchpad when doing so will not com-
promise MTO. The compiler can also allocate to multiple
ORAM banks, which sometimes significantly reduces access
times. We have formalized our approach and proved it enjoys
MTO. Our FPGA-based hardware prototype and simulation
results show that GhostRider significantly outperforms the
baseline strategy.

1. Introduction
Cloud computing allows users to outsource both data and
computation to third-party cloud providers, and promises
numerous benefits such as economies of scale, easy main-
tenance, and ubiquitous availability. These benefits, how-
ever, come at the cost of giving up physical control of one’s
computing infrastructure and private data. Privacy concerns
have held back government agencies and businesses alike
from outsourcing their computing infrastructure to the pub-
lic cloud [9, 52].
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To protect the confidentiality of sensitive data in the
cloud, thwarting software attacks alone is necessary but
not sufficient. An attacker with physical access to the com-
puting platform (e.g., an malicious insider or intruder) can
launch various physical attacks, such as tapping memory
buses, plugging in malicious peripherals, or using cold-
(re)boots [26, 45]. Such physical attacks can uncover secrets
even when the software stack is provably secure.

While memory encryption [19, 31, 47–49] can be used to
hide the contents of memory from direct inspection, an ad-
versary can still observe memory addresses transmitted over
the memory bus. Perhaps surprisingly, the memory address
trace is a side channel that can leak sensitive information,
e.g., cryptographic keys [56]. To cryptographically obfus-
cate the memory access patterns, one can employ Oblivi-
ous RAM (ORAM) [20, 21], a cryptographic construction
that makes memory address traces computationally indistin-
guishable from a random address trace. Encouragingly, re-
cent theoretical breakthroughs [44, 46] have allowed ORAM
memory controllers to be built [16, 35] – these turn DRAM
into oblivious, block-addressable memory banks.

The simplest way to deploy ORAM is to implement a
single, large ORAM bank that contains all the code and
data (assuming that the client can use standard PKI to
safely transmit the code and data to a remote secure pro-
cessor). A major drawback of this baseline approach is effi-
ciency: every single memory-block access incurs the ORAM
penalty which is roughly (poly-)logarithmic in the size of the
ORAM [21, 44]. In practice, this translates to almost 100×
additional bandwidth that, even with optimizations, incurs a
∼10× latency cost per block [16, 35]. Another issue is that,
absent any padding, the baseline approach reveals the total
number of memory accesses made by a program, which can
leak information about the secret inputs.

Memory Trace Oblivious (MTO) Program Execution Ul-
timately, the goal is to ensure that programs satisfy a prop-
erty called memory-trace oblivious (MTO) execution, mean-
ing that an adversary who observes memory contents, ad-
dress traffic, and access times while the program executes
can learn nothing about the program’s sensitive inputs and
outputs. While allocating code and data in ORAM is one
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approach toward achieving MTO,1 our prior work [33] sug-
gested that greater efficiency can be achieved by having the
compiler take advantage of the fact that not all parts of a
program’s memory trace leak sensitive information. As an
example, a program that sequentially scans through a sen-
sitive array and computes the sum has a fixed, predictable
memory access pattern that is independent of the sensitive
array contents. In this case, it suffices to merely encrypt the
array, instead of placing the array in ORAM. A further ef-
ficiency gain stems from placing data into different ORAM
banks, which can now be smaller and in turn faster to access.

While our prior work lays out an initial vision of memory-
trace oblivious program execution, this work is conceptual,
rather than practical. In particular, we did not target a mod-
ern processor architecture, instead assuming unbounded re-
sources and no caching.

1.1 Our Results and Contributions
In this paper, we make the first endeavor to bring the the-
ory of MTO to practice. We design and build GhostRider,
a hardware/software platform for provably secure, memory-
trace oblivious program execution. Compiling to a realistic
architecture while formally ensuring MTO raises interesting
challenges in the compiler and type system design, and ul-
timately requires a co-operative re-design of the underlying
processor architecture. Our contributions are:

New compiler and type system We build the first memory-
trace oblivious compiler that emits target code for a real-
istic ORAM-capable processor architecture. The compiler
must explicitly handle low-level resource allocation based
on underlying hardware constraints, and while doing so is
standard in non-oblivious compilers, achieving them while
respecting the MTO property is non-trivial. Standard re-
source allocation mechanisms would fail to address the
MTO property. For example, register allocation spills reg-
isters to the stack, thereby introducing memory events. Fur-
thermore, caching serves memory requests from an on-chip
cache, which suppresses memory events. If these actions
are correlated with secret data, they can leak information.
We introduce new techniques for resolving such challenges.
In lieu of implicit caches we employ an explicit, on-chip
scratchpad. Our compiler implements caching in software
when its use does not compromise MTO.

To formally ensure the MTO property, we define a new
type system for a RISC-style low-level assembly language.
We show that any well-typed program in this assembly lan-
guage will respect memory-trace obliviousness during ex-
ecution. When starting from source programs that satisfy
a standard information flow type system [13], our com-
piler generates type-correct, and therefore safe, target code.
Specifically, we implement a type checker that can verify the
type-correctness of the target code.

1 In fact, ORAM allocation is not entirely sufficient: the length of an address
trace can also reveal information, so additional steps are necessary.

void histogram(secret int a[], // ERAM

secret int c[]) { // ORAM (output)

public int i;

secret int t, v;

for(i=0;i<100000;i++) // 100000 <= len(c)

c[i]=0;

i=0;

for(i=0;i<100000;i++) { // 100000 <= len(a)

v=a[i];

if(v>0) t=v%1000;

else t=(0-v)%1000;

c[t]=c[t]+1; } }

Figure 1. Motivating source program.

Processor architecture for MTO program execution To
enable an automated approach for efficient memory-trace
oblivious program execution, we need new hardware fea-
tures that are not readily available in existing ORAM-
capable processor architectures [15, 17, 35]. GhostRider
builds on the Phantom processor architecture [35] but ex-
poses new features and knobs to the software. In addi-
tion to supporting a scratchpad, as mentioned above, the
GhostRider architecture complements Phantom’s ORAM
support with encrypted RAM (ERAM), which is not oblivi-
ous and therefore more efficiently supports variables whose
access patterns are not sensitive. Section 6 describes ad-
ditional hardware-level contributions. We prototyped the
GhostRider processor on a Convey HC2 platform [10] with
programmable FPGA support. The GhostRider processor
supports the RISC-V instruction set [51].

Implementation and Empirical Results Our empirical re-
sults are obtained through a combination of software em-
ulation and experiments on an FPGA prototype. Our FPGA
prototype supports one ERAM bank, one code ORAM bank,
and one data ORAM bank. The real processor experiments
demonstrate the feasibility of our architecture, while the
software simulator allows us to test a range of configura-
tions not limited by the constraints of the current hardware.
In particular, the software simulator models multiple ORAM
banks at a higher clock rate.

Our experimental results show that compared to the base-
line approach of placing everything in a single ORAM bank,
our compile-time static analysis achieves up to nearly an
order-of-magnitude speedup for many common programs.

2. Architecture and Approach
This section motivates our approach and presents an overview
of GhostRider’s hardware/software co-design.

2.1 Motivating example
We wish to support a scenario in which a client asks an un-
trusted cloud provider to run a computation on the client’s
private data. For example, suppose the client wants the
provider to run the program shown in Figure 1, which is
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Figure 2. GhostRider architecture.

a simple histogram program written in a C-like source lan-
guage. As input, the program takes an integer array a, and as
output it modifies integer array parameter c. We assume both
arrays have size 100,000. The function’s code is straightfor-
ward, computing the histogram of the absolute values of in-
tegers modulo 1000 appearing in the input array. The client’s
security goal is data confidentiality: the cloud provider runs
the program on input array a, producing output array c, but
nevertheless learns nothing about the contents of either a

or c. We express this goal by labeling both arrays with the
qualifier secret (data labeled public is non-sensitive).

2.2 Threat model
The adversary has physical access to the machine(s) being
used to run client computations. As in prior work that ad-
vocates the minimization of the hardware trusted comput-
ing base (TCB) [47–49], we assume that trust ends at the
boundary of the secure processor. Off-chip components are
considered insecure, including memory, system buses, and
peripherals. For example, we assume the adversary can ob-
serve the contents of memory, and can observe communi-
cations on the bus between the processor and the memory.
By contrast, we assume that on-chip components are secure.
Specifically, the adversary cannot observe the contents of the
cache, the register file, or any on-chip communications. Fi-
nally, we assume the adversary can make fine-grained timing
measurements, and therefore can learn, for example, the gap
between observed events. Analogous side channels such as
power consumption are outside the scope of this paper, and
have received orthogonal treatment in related work [29].

2.3 Architectural Overview
As mentioned in the introduction, one way to defend against
such an adversary is to place all data in a single (large)
ORAM; e.g., for the program in Figure 1 we place the arrays
a and c in ORAM. Unfortunately this baseline approach is
not only expensive, but also leaks information through the
total number of ORAM accesses (if the access trace is not
padded to a value that is independent of secret data). We now
provide an architectural overview of GhostRider (Figure 2)
and contrast it with this baseline.

Joint ORAM-ERAM memory system In the GhostRider
architecture, main memory is split into three types—normal
(unencrypted) memory (RAM), encrypted memory (ERAM),
and oblivious RAM (ORAM)—with one or more (logical)
banks of each type comprising the system’s physical mem-
ory. The differentiation of memory into banks allows a com-
piler to place only arrays with sensitive access patterns in-
side the more expensive ORAM banks, while keeping the
remaining data in the significantly faster RAM or ERAM
banks. For example, notice that in the program in Figure 1
the array a is always accessed sequentially while access
patterns to the array c can depend on secret array contents.
Therefore, our GhostRider compiler can place the array a in-
side an ERAM bank, and place the array c inside an ORAM
bank. The program accesses different memory banks at the
level of blocks using instructions that specify the bank and
a block-offset within the bank (after moving data to on-chip
memory as described below). Our hardware prototype fixes
block sizes to be 4KB for both ERAM and ORAM banks
(which is not an inherent limitation of the hardware design).

Software-directed scratchpad As mentioned earlier, cache
hit and miss behavior can lead to differences in the observ-
able memory traces. To prevent such cache-channel informa-
tion leakage, the GhostRider architecture turns off implicit
caching, and instead offers software-directed scratchpads for
both instructions and data. These scratchpads are mapped
into the program’s address space so that the compiler can
generate code to access them explicitly, and thereby avoid
information leaks. For example, the indices of array a in Fig-
ure 1 are deterministic; they do not depend on any secret in-
put. As such, it is safe to use the scratchpad to cache array
a’s accesses. The compiler generates code to check whether
the relevant block is in the scratchpad, and if not loads the
block from memory. On the other hand, all accesses to array
c depend on the secret input a, so a memory request will al-
ways be issued independent of whether the requested block
is in the scratchpad or not.

Deterministic Processor Pipeline To avoid timing-channel
leakage, our pipelined processor ensures that instruction tim-
ings are deterministic. We do not use dynamic branch predic-
tion and fix variable-duration instructions, such as division,
to take the worst-case execution time, and disable concurrent
execution of other instructions.

Initialization We design the oblivious processor and mem-
ory banks as a co-processor that runs the application natively
(i.e., without an OS) and is connected to a networked host
computer that can be accessed remotely by a user. We as-
sume that the secure co-processor has non-volatile memory
for storing a long-term public key (certified using PKI), such
that the client can securely ship its encrypted code and data
to the remote host, and initialize execution on the secure
co-processor. Implementing the secure attestation is stan-
dard [25], and we leave it to future work.
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m,n ∈ Z o1, ..., on ∈ ORAMbanks
k ∈ Block IDs r ∈ Registers
l ∈ Labels = {D,E} ∪ORAMbanks
ι ::= ldb k ← l[r] load block to scratchpad

| stb k store block to memory
| r ← idb k retrieve the block ID
| ldw r1 ← k[r2] load a scratchpad val. to reg.
| stw r1 → k[r2] store a reg. val. to scratchpad
| r1 ← r2 aop r3 compute an operation
| r1 ← n assign a constant to a register
| jmp n (relative) jump
| br r1 rop r2 ↪→ n compare and branch
| nop empty operation

I ::= ι | I; ι instruction sequence

Figure 3. Syntax for LT language, comprising (1) ldb and
stb instructions that move data blocks between scratchpad
and a specific ERAM or ORAM bank, and (2) scratchpad-
to-register moves and standard RISC instructions.

3. Target language
This section presents a small formalization of GhostRider’s
instruction set, which we call LT . The next section presents
a type system for this language that guarantees security, and
the following section describes our compiler from a C-like
source language to well-typed LT programs.

3.1 Instruction set
The core instructions of LT are in the style of RISC-V [51],
our prototype’s instruction set, and are formalized in Fig-
ure 3. We define labels l that distinguish the three kinds of
main memory:D for normal (D)RAM, E for ERAM, and oi
for ORAM. For the last, the i identifies a particular ORAM
bank. We can view each label as defining a distinct address
space.

The instruction ldb k ← l[r] loads a block from memory
into the scratchpad.2 Here, l is the address space, r is a reg-
ister containing the address of the block to load from within
that address space, and k is the scratchpad block identifier.
Our formalism refers to scratchpad blocks by their identi-
fier, treating them similarly to registers. Our architecture re-
members the address space and block address within that
address space that the scratchpad block was loaded from so
that writebacks, via the stb k instruction, will go to the orig-
inal location. We enforce this one-to-one mapping to avoid
information leaks via write-back from the scratchpad (e.g.,
that where a scratchpad block is written to, in memory, could
reveal information about a secret, or that the effect of a write
could do so, if blocks are aliased).

2 In our hardware prototype the scratchpad is mapped into addressable
memory, so this instruction and its counterpart, stb, are implemented as
data transfers. In addition, the compiler implements idb. We model them in
LT explicitly for simplicity; see Section 6 for implementation details.

; v=a[i]

1 t1 ← ri div sizeblk

2 t2 ← ri mod sizeblk

3 ldb k1 ← E[t1]

4 ldw rv ← k1[t2]
; if(v>0) t= ...

5 br rv ≤ 0 ↪→ 3

6 rt ← rv % 1000

7 jmp 3
; else t= ...

8 t1 ← 0 − rv
9 rt ← t1 % 1000

; c[t]=c[t]+1

10 t1 ← rt >> 9

11 t2 ← rt & 511

12 ldb k2 ← O[t1]

13 ldw t3 ← k2[t2]

14 t4 ← t3 + 1

15 stw t4 → k2[t2]

16 stb k2

Figure 4. LT code implementing (part of) Figure 1

To access values from the scratchpad, we have scratchpad-
load and scratchpad-store instructions. The scratchpad-load
instruction loads a word from a scratchpad block, having
the form ldw r1 ← k[r2]. Assuming register r2 contains
n, this instruction loads the n-th word in block k into reg-
ister r1 (notice that we use word-oriented addressing, not
byte-oriented). The scratchpad-store instruction is similar,
but goes in the reverse direction. The instruction r ← idb k
retrieves the block offset of a scratchpad block k.

We have two kinds of assignment instructions, one in the
form of r1 ← r2 aop r3, and the other in the form of r ← n.
In LT we only model integer arithmetic operations, such as
addition, subtraction, multiplication, division, and modulus.

Jumps and branches use relative addressing. The jump in-
struction jmp n bumps the program counter by n instruc-
tions (where n can be negative). Branches, having the form
br r1 rop r2 ↪→ n, will compare the contents of r1 and r2
using rop, and will bump the pc by n if the comparison result
is true. An instruction sequence I is defined to be a sequence
of instructions concatenated using a logical operation ;. We
overload ; to operate over two instruction sequences such
that I; (I ′; ι) , (I; I ′); ι and I1; I2; I3 , (I1; I2); I3.

Note that our formalism does not model the instruction
scratchpad; essentially it assumes that all code is loaded on-
chip prior to the start of its execution. Section 5 discusses
how the instruction scratchpad is used in practice.

3.2 Example
Figure 4 shows LT code that corresponds to the body of the
second for loop in the source program from Figure 1. We
write rX for a register corresponding to variable X in the
source program (for simplicity) and write ti for i ∈ {1, 2, ...}
for temporary registers. In the explanation we refer to the
names of variables in the source program when describing
what the target program is computing.

The first four lines load the ith element of array a into v.
Line 1 computes the address of the block in memory that
contains the ith element of array a and line 2 computes
the offset of the element within that block. Here sizeblk is
the size of each block, which is an architecture constant.
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Line 3 then loads the block from ERAM, and line 4 loads
the appropriate value from the loaded block into v.

The next five lines implement the conditional. Line 5
jumps three instructions forward if v is not greater than 0,
else it falls through to line 6, which computes t. Line 7 then
jumps past the else branch, which begins on line 8, which
negates v to make it positive before computing t.

The final seven lines increment c[t]. Lines 10–13 are
analogous to lines 1–4; they compute the address of tth
element of array c and load it into temporary t3. Notice
that this time the block is loaded from ORAM, not ERAM.
Line 14 increments the temporary; line 15 stores it back to
the block in the scratchpad; and line 16 stores the entire
block back to ORAM.

4. Security by typing
This section presents a type system3 for LT that guaran-
tees programs obey the strong memory trace obliviousness
(MTO) security property.

4.1 Memory Trace Obliviousness
Memory trace obliviousness is a noninterference property
that also considers the address trace, rather than just the ini-
tial and final contents of memory [43]. MTO’s definition re-
lies on the notion of low equivalence which relates memories
whose RAM contents are identical. We formally define this
notion below, using the following formal notation:

M ∈ Addresses→ Blocks
a ∈ Addresses = Labels× Nat
b ∈ Blocks = Nat→ Z

We model a memory M as a map from addresses to blocks,
where an address is a pair consisting of a label l (correspond-
ing to an ORAM, ERAM, or RAM bank, as per Figure 3)
and an address n in that bank. A block is modeled as a map
from an address n to a (integer) value. Here is the definition
of memory low-equivalence:

DEFINITION 1 (Memory low equivalence). Two memories
M1, M2 are low equivalent, written M1 ∼L M2, if and
only if for all n such that 0 ≤ n < size(D) we have
M1(D,n) = M2(D,n).

The definition states that memories M1 and M2 are low
equivalent when only the RAM bank’s values of the memo-
ries are the same, but all of the other values could differ.

Intuitively, memory trace obliviousness says two things
given two low-equivalent memories. First, if the program
will terminate under one memory, then it will terminate
under the other. Second, if the program will terminate and
lead to a trace t under one memory, then it will do so under

3 For space reasons, the type system is simplified from the full version, given
in the extended technical report [32]. The full system models a stack to
support function calls, which we discuss briefly at the end of Section 5.

the other memory as well while also finishing with low-
equivalent memories.

To state this intuition precisely, we need a formal defini-
tion of a LT execution, which we give as an operational se-
mantics. The semantics is largely standard, and can be found
in the technical report [32]. The key judgment has the form
I ` (R,S,M, pc) −→t (R′, S′,M ′, pc′), which states that
program I , with a register file R, a (data) scratchpad S, a
memory M , and a program counter pc, executes some num-
ber of steps, producing memory trace t and resulting in a
possibly modified register file R′, scratchpad S′, memory
M ′, and program counter pc′.

DEFINITION 2 (Memory trace obliviousness). A program
I is memory trace oblivious if and only if for all mem-
ories M1 ∼L M2 we have I ` (R0, S0,M1, 0) −→t1

(R′1, S
′
1,M

′
1, pc1), and I ` (R0, S0,M2, 0) −→t2 (R′2, S

′
2,

M ′2, pc2), and |t1| = |t2| implies t1 ≡ t2 and M ′1 ∼L M
′
2.

Here R0 is a mapping that maps every register to 0, and
S0 maps every address to a all-0 block. Traces t consist of
reads/writes to RAM (both address and value) and ERAM
(just the address), accesses to ORAM (just the bank), and
instruction fetches. For the last we only model that a fetch
happened, not what instruction it is, as we assume code will
be stored in a scratchpad on chip. We write t1 ≡ t2 to say
that traces t1 and t2 are indistinguishable to the attacker;
i.e., they consist of the same events in the same order. Our
formalism models every instruction as taking unit time to
execute – thus the trace event also models the time taken to
execute the instruction. On the real GhostRider architecture,
each instruction takes deterministic but non-uniform time; as
this difference is conceptually easy to handle (by accounting
for instruction execution times in the compiler), we do not
model it formally, for simplicity (see Section 5).

4.2 Typing: Preliminaries
Now we give a type system for LT programs and prove that
type correct programs are MTO.

Symbolic values To ensure that the execution of a program
cannot leak information via its address trace, we statically
approximate what events a program can produce. An impor-
tant determination made by the type system is when a secret
variable can be stored in ERAM—because the address trace
will leak no information about it—and when it must be ac-
cessed in ORAM. As an example, suppose we had the source
program

if(s) then x[i]=1 else x[i]=2;

If x is secret but stored in RAM, then the value in x[i] after
running this program will leak the contents of secret variable
s. We could store x in ORAM to avoid this problem, but this
is unnecessary: both branches will modify the same element
of x, so encrypting the content of x is enough to prevent the
address trace from leaking information about s. The type
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Sym. vals. sv ∈ SymVals = n | ? | sv1 aop sv2 | Ml[k, sv]
Sym. Store Sym ∈ Registers ∪ Block IDs→ SymVals
Sec. Labels ` ∈ SecLabels = L | H
Label Map Υ ∈ (Registers→ SecLabels)

∪ (Block IDs→ Labels)

sv1 ≡ sv2

`safe sv1 `safe sv2
sv1 = sv2
sv1 ≡ sv2

Auxiliary Functions

select(l, a, b, c) =
a if l = D
b if l = E
c if otherwise.

slab(l) =
select(l, L, H, H)

ite(x, a, b) ={
a if x is true.
b otherwise.

`safe sv

l = D `safe sv
`safe Ml[k, sv]

`safe n

`safe sv1 `safe sv2
`safe sv1 aop sv2

`const sv

`const n `const ?

`const sv1 `const sv2
`const sv1 aop sv2

`const Sym

∀r. `const Sym(r)
∀k. `const Sym(k)

`const Sym

Figure 5. Symbolic values, labels, auxiliary judgments and
functions

system can identify this situation by symbolically tracking
the contents of the registers, blocks, etc.

To do this, the type rules maintain a symbolic store Sym,
which is a map from register and block IDs to symbolic
values. Figure 5 defines symbolic values sv, which con-
sist of constants n, (symbolic) arithmetic expressions, val-
ues loaded from memory Ml[k, sv], and unknowns ?. Most
interesting is memory values, which represent the address of
a loaded value: l indicates the memory bank it was loaded
from, sv corresponds to the offset (i.e., the block number)
within that bank, and k is the scratchpad block into which
the memory block is loaded.4

The type rules also make use of a label map Υ mapping
registers to security labels and block IDs to (memory) labels;
the latter tracks the memory bank from which a scratchpad
block was loaded.

The figure defines several judgments; the form of each
judgment is boxed. The first defines when two symbolic val-
ues can be deemed equivalent, written sv1 ≡ sv2: they must
be syntactically identical and safe static approximations. The
latter is defined by the judgment `safe sv, which accepts
constants, memory accesses to RAM involving safe indexes,
and arithmetic expressions involving safe values. Judgement

4 In actual traces t, the block number k is not visible; we track it symbol-
ically to model the scratchpad’s contents, in particular to ensure that the
same memory block is not loaded into two different scratchpad blocks.

Trace Pats. T ::= read(l, k, sv) | write(l, k, sv) | F | o
| T1@T2 | T1 + T2 | loop(T1, T2)

sv1 ≡ sv2
read(l, k, sv1) ≡ read(l, k, sv2)

o ≡ o T1 ≡ T2
T2 ≡ T1

sv1 ≡ sv2
write(l, k, sv1) ≡ write(l, k, sv2)

F ≡ F

T1@(T2@T3) ≡ (T1@T2)@T3
T1 ≡ T ′1 T2 ≡ T ′2
T1@T2 ≡ T ′1@T ′2

Figure 6. Trace patterns and their equivalence

`const sv says that symbolic value sv is not a memory value.
That is, sv is either a constant, a ?, or a binary expression
not involving memory values. Further, for a symbolic store
Sym, if all the symbolic values that it maps to can be ac-
cepted by `const sv, then we have `const Sym. The latter
judgment is needed when checking conditionals.

Finally, we give three auxiliary functions used in the
type system. Based on whether l is D, E, or an ORAM
bank, function select(l, a, b, c) returns a, b, or c respectively.
Function slab(·) maps a normal label l to a security label
`, which is either L or H. The label H classifies encrypted
memory—any ORAM bank and ERAM—while label L clas-
sifies RAM. These two labels form the two-point lattice with
L @ H. Note that L is equivalent to the public label used in
Figure 1, and H is equivalent to secret. Finally, function
ite(x, a, b) returns a if x is true, and returns b if x is false.

Trace patterns Figure 6 defines trace patterns T , which
statically approximate traces t. The first line in the definition
of T defines single events. The first two indicate reads and
writes to RAM or ERAM; they reference the memory bank,
block identifier in the scratchpad, and a symbolic value cor-
responding to the block address (not the actual value) read
or written. Pattern F corresponds to a non memory-accessing
instruction. The next pattern indicates a read or write from
ORAM bank o: this bank is the trace event itself because the
adversary cannot determine whether an access is a read or a
write, or which block within the ORAM is accessed. Trace
pattern T1@T2 is the pattern resulting from the concatena-
tion of patterns T1 and T2. Pattern T1 + T2 represents either
T1 or T2, and is used to type conditionals. Finally, pattern
loop(T1, T2) represents zero or more loop iterations where
the guard’s trace is T1 and the body’s trace is T2.

Trace pattern equivalence T1 ≡ T2 is defined in Figure 6.
In this definition, reads are equivalent to other reads access-
ing exactly the same location; the same goes for writes. Two
ORAM accesses to the same ORAM bank are obviously
treated as equivalent. Sum patterns specify possibly different
trace patterns, and loop patterns do not specify the number
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of iterations; as such we cannot determine their equivalence
statically. The concatenation operator @ is associative with
respect to equivalence.

4.3 Type rules
Figure 7 defines the security type system for LT . The figure
is divided into three parts.

Instructions Judgment ` ` ι : 〈Υ, Sym〉 → 〈Υ′, Sym′〉;T
is used to type instructions ι. Here, ` is the security context,
used in the standard way to prevent implicit flows. The rules
are flow sensitive: The judgement says that instruction ι has
a type 〈Υ, Sym〉 → 〈Υ′, Sym′〉, and generates trace pattern
T . Informally, we can say by executing ι, a state correspond-
ing to security type 〈Υ, Sym〉 will be changed to have type
〈Υ′, Sym′〉.

Rule T-LOAD types load instructions. The first premise
ensures that the contents of register r, the indexing register,
are not leaked by the operation. In particular, the loaded
memory bank l must either be ORAM, or else the register
r may only contain public data (from RAM). In the latter
case, there is no issue with leaking r, and in the former case
r will not be leaked indirectly by the address of the loaded
memory since it is stored in ORAM. The final two premises
determine the final trace pattern. When the memory bank
l is D or E, then the trace pattern indicates a read event
from the appropriate block and address. When reading from
an ORAM bank the event is just that bank itself. The other
premises in the rule update Υ to map the loaded block k to
the label of the memory bank, and update Sym to track the
address of the block.

We defer discussion of rule T-STORE for the moment,
and look at the next three rules, T-LOADW, T-STOREW, T-
IDB, which are used to load and store values related blocks
in the scratchpad. The first two rules resemble standard in-
formation flow rules. The second premise of T-LOADW is
similar to the first premise of T-LOAD in preventing an indi-
rect leak of index register r2, which would occur if the label
of r2 was H but the label of k was L. Likewise, the premise of
T-STOREW prevents leaking the contents of r1 and r2 into
the stored block, and also prevents an implicit flow from `
(the security context). As such, these two rules ensure that a
block k with label ` never contains information from mem-
ory labeled `′ such that `′ A `. The remaining premises of
Rule T-LOADW flow-sensitively track the label and sym-
bolic value of the loaded register. In particular, they set the
label of r1 to be that of the block loaded, and the symbolic
value of r1 to be the address of the loaded value in memory.
T-STOREW changes neither Υ nor Sym: even though the
content of the scratchpad has changed, its memory label and
its address in memory has not. Both rules emit trace pattern
F as the operations are purely on-chip. We emit this event
to account for the time taken to execute an instruction; as-
suming uniform times for instructions and memory accesses,
MTO executions will also be free of timing channels.

Returning to rule T-STORE, we can see that the store
takes place unconditionally—no constraints on the labels of
the memory or block must be satisfied. This is because the
other type rules ensure that all blocks k never contain infor-
mation higher than their security label `, and thus the block
can be written straight to memory having the same secu-
rity label. That said, information could be leaked through
the memory trace, so the emitted trace pattern will differ de-
pending on the label of the block: If the label is D or E then
the trace pattern will be a write event, and otherwise it will
be the appropriate ORAM event. Leaks via the memory trace
are then prevented by T-IF and T-LOOP, discussed shortly.

Rule T-IDB is similar to rule T-LOADW. For the third
premise, if l is either D or E, the block k has a public
address, and thus the value assigned to register r is public;
otherwise, when l is an ORAM bank, the register r is secret.

Rule T-BOP types binary operations, updating the secu-
rity label of the target register to be the join of labels of the
source registers. Rule T-ASSIGN gives the target register la-
bel L as constants are not secret. Rules T-NOP is always safe
and has no effect on the symbolic store or label environment.
All of these operations occur on-chip, and so have pattern F.
Finally, rule T-SEQ types instruction sequences by compos-
ing the symbolic maps, label environments, and traces in the
obvious way.

Branching Rules T-IF and T-LOOP consider structured
control flow. Rule T-IF deals with instruction sequences of
the form of I = ι1; It; ι2; If , where ι1 is a branching in-
struction deciding, ι2 is a jump instruction jumping over the
false branch, and It and If are the true and false branches
respectively; the relative offsets n1 and n2 are based on the
length of these code sequences. We require both branches to
have the same type, i.e. 〈Υ, Sym〉 → 〈Υ′, Sym′〉, as for the
sequence I itself.

When the security context is high, i.e. ` = H, or when the
if-condition is private, i.e. Υ(r1)tΥ(r2) = H, then `′ will be
H and we impose three restrictions. First, both of the blocks
It and If must have equivalent trace patterns. (The trace of
the true branch is T1@F where T1 covers It and F covers
the jump instruction ι2.) Second, if the security context is
public, i.e. ` = L, then we restrict `const Sym to enforce
Sym(r) does not map to memory values. The reason is that
in a public context, two equivalent symbolic memory values
may refer to two different concrete values, since the memory
regionD can be modified. Third, for any register r, its value
after taking either branch must be the same, or the register
r must have a high security label (i.e. Υ′(r) = H). So if
Υ′(r) = L, the type system enforces that its symbolic values
on the two paths are equivalent, i.e. Sym′(r) ≡ Sym′(r),
which only requires `safe Sym′(r).

The final premise for rule T-IF states that the sequence’s
trace pattern T is either F@T1@F when both branches’ pat-
terns must be equal, or else is an or-pattern involving the
trace T2 from the else branch.
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Instructions

T-LOAD

l 6∈ ORAMbanks⇒ Υ(r) = L

Υ′ = Υ[k 7→ l] Sym′ = Sym[k 7→ Sym(r)]
T0 = read(l, k, Sym(r)) T = select(l, T0, T0, l)

` ` ldb k ← l[r] : 〈Υ, Sym〉 → 〈Υ′, Sym′〉;T

T-STORE

Sym(k) = sv Υ(k) = l
T0 = write(l, k, sv) T = select(l, T0, T0, l)

` ` stb k : 〈Υ, Sym〉 → 〈Υ, Sym〉;T

T-LOADW

l = Υ(k) Υ(r2) v slab(l)
Υ′ = Υ[r1 7→ slab(l)] sv = Ml[k, Sym(r2)]

Sym′ = Sym[r1 7→ sv]

` ` ldw r1 ← k[r2] : 〈Υ, Sym〉 → 〈Υ′, Sym′〉; F

T-STOREW
` tΥ(r1) tΥ(r2) v slab(Υ(k))

` ` stw r1 → k[r2] : 〈Υ, Sym〉 → 〈Υ, Sym〉; F

T-IDB

Sym(k) = sv Υ(k) = l
Υ′ = Υ[r 7→ select(l, L, L, H)] Sym′ = Sym[r 7→ sv]

` ` r ← idb k : 〈Υ, Sym〉 → 〈Υ′, Sym′〉; F

T-BOP

`′ = Υ(r2) tΥ(r3) Υ′ = Υ[r1 7→ `′]
sv = Sym(r2) aop Sym(r3) Sym′ = Sym[r1 7→ sv]

` ` r1 ← r2 aop r3 : 〈Υ, Sym〉 → 〈Υ′, Sym′〉; F

T-ASSIGN
Υ′ = Υ[r 7→ L] Sym′ = Sym[r 7→ n]

` ` r ← n : 〈Υ, Sym〉 → 〈Υ′, Sym′〉; F

T-NOP ` ` nop : 〈Υ, Sym〉 → 〈Υ, Sym〉; F

T-SEQ

` ` I : 〈Υ, Sym〉 → 〈Υ′, Sym′〉;T1

` ` ι : 〈Υ′, Sym′〉 → 〈Υ′′, Sym′′〉;T2

` ` I; ι : 〈Υ, Sym〉 → 〈Υ′′, Sym′′〉;T1@T2

Branching

T-IF

I = ι1; It; ι2; If |It| = n1 − 2 |If |+ 1 = n2

ι1 = br r1 rop r2 ↪→ n1 ι2 = jmp n2

`′ = ` tΥ(r1) tΥ(r2)
`′ ` It : 〈Υ, Sym〉 → 〈Υ′, Sym′〉;T1

`′ ` If : 〈Υ, Sym〉 → 〈Υ′, Sym′〉;T2

`′ = H⇒


T1@F ≡ T2 ∧
` = L⇒`const Sym ∧
∀r.Υ′(r) = L⇒ `safe Sym′(r)


T = ite(`′ = H, F@T1@F, F@((T1@F) + T2))

` ` I : 〈Υ, Sym〉 → 〈Υ′, Sym′〉;T

T-LOOP

I = Ic; ι1; Ib; ι2
|Ib| = n1 − 2 |Ic|+ n1 = 1− n2

ι1 = br r1 rop r2 ↪→ n1 ι2 = jmp n2

` tΥ(r1) tΥ(r2) v L

` ` Ic : 〈Υ, Sym〉 → 〈Υ′, Sym′〉;T1

` ` Ib : 〈Υ′, Sym′〉 → 〈Υ, Sym〉;T2

` ` I : 〈Υ, Sym〉 → 〈Υ′, Sym′〉; loop(T1, T2)

Subtyping

T-SUB

` ` ι : 〈Υ, Sym〉 → 〈Υ′, Sym′〉;T
Υ′ � Υ′′ Sym′ � Sym′′

` ` ι : 〈Υ, Sym〉 → 〈Υ′′, Sym′′〉;T

S-LABEL

∀r.Υ(r) v Υ′(r)
∀k.Υ(k) = Υ′(k)

Υ � Υ′

S-SYM

∀r.Sym′(r) = ? ∨ Sym(r) = Sym′(r)
∀k.Sym′(k) = ? ∨ Sym(k) = Sym′(k)

Sym � Sym′

Figure 7. Security Type System for LT

Rule T-LOOP imposes structural requirements on I sim-
ilar to T-IF. The premise ` t Υ(r1) t Υ(r2) v L implies
two restrictions. On the one hand, ` v L, prevents any loop
from appearing in a secret if-statement, because otherwise
the number of loop iterations may leak information about
which branch is taken. On the other hand, Υ(r1)tΥ(r2) v L

implies that the loop condition must be public, or otherwise,
similarly, the number of iterations would leak secret infor-
mation about r1 and/or r2.

Subtyping Finally, rule T-SUB supports subtyping on the
symbolic store and the label map. For the first, a symbolic
store Sym can approximated by a store Sym′ that either
agrees on the symbolic values mapped to be Sym or maps
them to ?. For the second, a register’s security label can be
approximated by one higher in the lattice; block labels may
not change. Subtyping is important for typing join points af-
ter branches or loops. For example, if a conditional assigned
a register r the value 1 in the true branch but assigned r to

2 in the false branch, we would use subtyping to map r to ?
to ensure that the symbolic store at the end of both branches
agrees, as required by T-IF.

4.4 Security theorem
All well-typed programs are memory-trace oblivious:

THEOREM 1. Given I , Υ, and Sym, if there exists some Υ′,
Sym′ and T such that L ` I : 〈Υ, Sym〉 → 〈Υ′, Sym′〉;T ,
where ∀r.Sym(r) = ? and Υ(r) = L and ∀k.Sym(k) = ?
and Υ(k) = D then program I is memory-trace oblivious.

The proof can be found in our technical report [32].

5. Compilation
We have developed a compiler from an imperative, C-like
source language, which we call LS , to LT . Our compiler is
implemented in about 7600 lines of Java, with roughly 400
LoC dedicated to the parser, 700 LoC to the type checker,
3500 LoC to the compiler/optimizer, 950 LoC to the code
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generator, and the remainder to utility functions. This section
informally describes our compilation approach.

5.1 Source Language
Syntax An LS program is a collection of (possibly mutu-
ally recursive) functions and a collection of (possibly mu-
tually recursive) type definitions. A type definition is sim-
ply a mapping of a type name to a type where types are
either natural numbers, arrays, or pointers to records (i.e.,
C-style structs). Each type is annotated with a security la-
bel which is either secret or public indicating whether the
data should be visible/inferrable by the adversary or not.

A function consists of a sequence of statements s which
are either no-ops, variable assignments, array assignments,
conditionals, while loops, or returns. As usual, conditional
branches and loop bodies may consist of one or more state-
ments. Expressions e appearing in statements (e.g., in as-
signments) consist of variables x, arithmetic ops e1 aop e2,
array reads e[e], and numeric constants n. Variables may
hold any data other than functions (i.e., there are no function
pointers). Guards in conditionals and while loops consist of
predicates involving relational operators.

Typing LS programs are type checked before they are
compiled. We do this using an information flow-style type
system (cf. the survey of Sabelfeld and Myers [43]). As is
standard, the type system prevents explicit flows and im-
plicit flows. In particular, it disallows assignments like p =

s where p is a public variable and s is a secret variable,
and disallows conditionals like if (s == 0) then p = 0

else p = 1, which leaks information about s since after
the conditional the adversary knows p == 0 implies s ==

0. It also disallows array writes like p[s] = 5 since the ad-
versary can learn the value of s by seeing which element of
the public array has changed. Note that accessing s[p] is
safe because, despite knowing the index, an adversary can-
not learn the value being accessed.

To prevent the length of a memory trace from revealing
information, we require that loop guard expressions only in-
volve public values (which is a standard restriction [43]).
One can work around this problem by “padding out” loop it-
erations, e.g., by converting a loop like while (slen > 0)

{ sarr[slen--]++; } to be plen = N; while (plen

> 0) { if (plen <= slen) sarr[--plen]++; }where
N is a large, fixed constant. For similar reasons we also re-
quire that whether a function is called or returned from, and
which function it is, may not depend on secret information
(e.g., the call or return may not occur in a conditional whose
guard involves secret information).

Compilation overview After source-language type check-
ing, compilation proceeds in four stages—memory layout,
translation, padding, and register allocation—after which the

result is type checked using the LT type system, to confirm
that it is memory-trace oblivious.5

5.2 Memory bank allocation
The first stage of compilation allocates global variables to
memory banks. Public variables are always stored in RAM,
while secret variables will be allocated either to ERAM or
ORAM. Two blocks in the scratchpad are reserved for secret
and public variables, respectively, that will fit entirely within
the block; these are essentially those that contain numbers,
(pointers to) records, and small arrays. Such variables will
be loaded into the scratchpad at the start of executing a pro-
gram, and written back to memory at the end. The remaining
scratchpad blocks are used for handling (large) arrays; the
compiler will always use the same block for the same array.
Public arrays are allocated in RAM, and secret arrays al-
ways indexed by public values are allocated in ERAM, and
ORAM otherwise. The compiler initially assigns a distinct
logical ORAM bank for each secret array, and allocates log-
ical banks up to the hardware limit.

5.3 Basic compilation
The next stage is basic compilation (translation). Expres-
sions are compiled by loading relevant variables/data into
registers, performing the computation, and then storing back
the result. Statements are compiled idiomatically to match
the structure expected by the type rules in Figure 7 (with
some work deferred to the padding stage).

Perhaps the most interesting part is handling variable
accesses. Variables permanently resident in the scratchpad
are loaded at the start of the program, and stored back at
the end. Each read/write results in a ldw, to load a variable
into a temporary register, and a stw to store back the result.
Accesses to data (i.e., arrays) not permanently stored in
the scratchpad will also require a ldb to load the relevant
block into the scratchpad first and likewise a stb to store it
back. A standard software cache, rather than a scratchpad,
could eliminate repeated loads and stores of blocks from
memory but could violate MTO. This is because a non-
present block will induce memory traffic while a present
block will not, and the presence/absence of traffic could be
correlated with secret information. To avoid this, we have the
compiler emit instructions that perform caching explicitly,
using the scratchpad, with caching only enabled when in a
public context, i.e., in a portion of code whose control flow
does not depend on secret data. To support software-based
caching, the compiler statically maps memory-resident data
to particular scratchpad blocks, always loading the same
data to the same block. Prior to doing so, and when safe,
the compiler uses the idb instruction to check whether the
relevant scratchpad block contains the memory block we
want and loads directly from it, if so.

5 This is essentially a kind of translation validation [38], which removes the
compiler from the trusted computing base. We believe that well typed LS
programs yield well typed LT programs, but leave a proof as future work.
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Supporting functions requires handling calling contexts
and local variables. We do this with two stacks, one in RAM
and one in ERAM. Function calls are only permitted in a
public context, which means that normal stack allocation and
deallocation reveal no information, so no ORAM stack is
needed. When a function is called, the current scratchpad
variable blocks are pushed on the relevant stacks. At the
start of a function, we load the blocks that hold the local
variables. Local variables implementing ORAM arrays are
stored by reference, with the variable pointing to the actual
array stored in ORAM. This array is deallocated when its
variable is popped from the stack, when the function returns
(which like calls are allowed only in a public context).

The compiler is also responsible for emitting instructions
that load code into the instruction scratchpad, as implicit
instruction fetches could reveal information [33]. (To boot-
strap, the first code block is loaded automatically.) At the
moment, our compiler emits code that loads the entire pro-
gram into the scratchpad at the start; we leave to future work
support for on-the-fly instruction scratchpad use.

5.4 Padding and register allocation
Both branches of a secret conditional must produce the same
trace. We ensure they do so by inserting extra instructions in
one or both branches according to the solution to the short-
est common supersequence problem [18]. When matching
the two branches, we must account for the memory trace and
instruction execution times. Only ldb and stb emit memory
events; we discuss these shortly. While our formalism as-
sumes each instruction takes unit time, the reality is different
(cf. Table 2): times are deterministic, but non-uniform. For
single-cycle operations (e.g., 64b ALU ops), we pad with
nops. For two-cycle ldw and stw instructions, we pad with
two nops. For multiply and divide instructions, which take
70 cycles each, we could pad with 70 nops but this results
in a large space overhead. As such, we pad both with the in-
struction r0← r0 ∗ r0, where r0 is always 0. For condition-
als, we pad the not-taken branch with two nops, to account
for the hardware-induced delay on the taken branch.

Padding for stb and ldb requires instructions that gener-
ate matching trace events. An access to ORAM is the sim-
plest to pad, since the adversary cannot distinguish a read
from a write. We can load any block (e.g., the first block
of the ORAM) into a dedicated “dummy” scratchpad block,
i.e. this block is used for loading and saving dummy memory
blocks only.

For RAM and ERAM, the address being accessed is vis-
ible, so we need to make sure that the equivalent padding
accesses the same address. To do this, the compiler should
insert further instructions to compute the address. These in-
structions can be computed using the symbolic value: (1) if
the symbolic value is a constant, then insert an assign in-
struction; (2) if the symbolic value is a binary operation of
two symbolic values, then insert instructions to compute the
two symbolic values respectively, and then another instruc-

tion to compute the binary operation; and (3) if the symbolic
value is a memory value, then insert instructions to compute
the offset first, and then insert a ldw instruction.

With instructions inserted to compute the address, we
must emit either a load or a store depending on the instruc-
tion we are trying to match. For RAM, this instruction will
always be a load because we perform padding in the H con-
text, and the type system prevents writing to RAM. To mimic
the read(l, k, sv) trace pattern, we first compute sv and then
insert a ldb k ← l[r] instruction where r stores the value
for sv. To handle ERAM writes is challenging because we
want the write to be a no-op but not appear to be so. To do
this, we require the compiler to always follow an ERAM ldb
with a stb back to the same address. In doing so, the com-
piler also prevents the padded instruction from overwriting a
dirty scratchpad block.

At the conclusion of the padding stage we perform stan-
dard register allocation to fill in actual registers for the tem-
poraries we have used to this point.

6. Hardware Implementation
We implement our deterministic processor by modifying
Rocket, a single-issue, in-order, 6-stage pipelined CPU de-
veloped at UC Berkeley [41]. Rocket implements the RISC-
V instruction set [51] and is comparable to an ARM Cor-
tex A5 CPU. We modified the baseline processor to remove
branch prediction logic (so that conditional branches are al-
ways not-taken) and to make each instruction execute in a
fixed number of cycles. We describe the remaining changes
below.

Instruction-set Extension We customize RISC-V to add a
single data transfer instruction that implements ldb and stb
from the formalism. We do this using a Data Transfer ac-
celerator (Figure 2) that attaches to the processor’s accel-
erator interface [50]. We also interface the Data Transfer
accelerator with the x86-Linux host through Rocket’s con-
trol register file so that it can load an elf-formatted binary
into GhostRider’s memory and reset its processor. Once this
is done, the host performs processor control register writes
to initiate transfers from the co-processor memory to the
code ORAM for the code and data sections of the binary.
The first code block of a program is loaded into the instruc-
tion scratchpad to begin execution; if subsequent instruction
blocks are needed they must be loaded explicitly.

Scratchpads GhostRider has two scratchpads, one for
code and one for data, each of which can hold eight 4KB
blocks. The instruction scratchpad is implemented similar
to an 8-way set-associative cache, where each way contains
one block. The accelerator transfers one block at a time to
a specified way in the instruction scratchpad. Once a block
has been written, the valid and tag bits for that block are
updated. The architecture does not implement the idb in-
struction from the formalism; instead, the compiler uses the
first 8 bytes of every block to remember its address.
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ORAM controller We implement ORAM by building on
the Phantom ORAM controller [35] and implement an
ORAM tree 13 levels deep (i.e., 212 leaf buckets), with
4 blocks per bucket and an effective capacity of 64MB.
ORAM controllers include an on-chip stash to temporarily
buffer ORAM blocks before they are written out to mem-
ory. We set this stash to be 128 blocks. The Phantom design
(and likewise, Ascend’s [15–17]) treats the stash as a cache
for ORAM lookups, which is safe when handling timing
channels by controlling the memory access rate. GhostRider
mitigates timing channels by having the compiler enforce
MTO while assuming that events take the same time. As
such, we modify Phantom’s design to generate an access to
a random leaf in case the requested block is found in the
stash, to ensure uniform access times.

FPGA Implementation GhostRider is implemented on
one of Convey HC-2ex’s [10] four Xilinx Virtex-6 LX760
FPGAs. We measure hardware design size in terms of FPGA
slices for logic and Block RAMs for on-chip memory. A
slice comprises four 6-input, 2-output lookup tables (imple-
menting configurable logic) and eight flip-flops (as storage
elements) in addition to multiplexers, while each BRAM
on Virtex-6 is either an 18Kb or 36Kb SRAM with up to
two configurable read-write ports. The GhostRider proto-
type uses 47,357 such slices (39% of total) to implement
both the CPU and the ORAM controller, and requires 685
of 1440 18Kb BRAMs (47.5%). Table 1 shows how these
resources are broken up between the Rocket CPU and the
ORAM controller, with the remaining resources being used
by Convey HC-2ex’s boilerplate logic to interface with the
x86 core and DRAM. Note that this breakdown is a synthesis
estimate before place and route.

Our prototype currently supports one data ORAM bank,
one code ORAM bank, and one ERAM bank. We do not im-
plement encryption (it is a small, fixed cost and uninteresting
in terms of performance trends), and do not have separate
DRAM; all public data is stored in ERAM when running on
the hardware.

The Convey machine requires the hardware design to
be run at 150 MHz while our ORAM controller prototype
currently synthesizes to a maximum operating frequecy of
140MHz. Pending further optimization to meet 150 MHz
timing, we run both the CPU and the ORAM controller in a
75 MHz clock domain, and use asynchronous FIFOs to con-
nect the ORAM controller to the DDR DRAM controllers.

GhostRider simulator timing model In addition to demon-
strating feasibility with our hardware prototype, we study the
effect of GhostRider’s compiler on alternate, more efficient
ORAM configurations, e.g., Phantom at 150MHz [35] with
two ORAM banks and a distinct (non-encrypting) DRAM
bank. Hence we generate a timing model for both the modi-
fied processor and ORAM banks based on Phantom’s hard-
ware implementation [35], and incorporate the timing model

Slices BRAMs
Rocket 9287 (8.8%) 36 (10.5%)
ORAM 12845 (12.2%) 211 (61.5%)

Table 1. FPGA synthesis results on Convey HC-2ex.

Feature Latency (# cycles)
64b ALU 1

Jump taken/not taken 3/1
64b Multiply/Divide 70/70

Load/Store from Scratchpad 2
DRAM (4kB access) 634

Encrypted RAM (4kB access) 662
ORAM 13 levels (4kB block) 4262

Table 2. Timing model for GhostRider simulator.

Name Brief Description Input Size (KB)

sum
Summing up all positive

103

elements in an array

findmax
Find the max element

103

in an array

heappush
insert an element into

103

a min-heap

perm
computing a permutation

103

executing a[b[i]] = i for all i

histogram
compute the number of

103

occurances of each last digit

dijkstra
Single-source shortest

103

path
search binary search algorithm 1.7× 104

heappop
pop the minimal element

1.7× 104

from a min-heap

Table 3. Evaluated programs organized into programs with
predictable, partially predictable, and data dependent mem-
ory access patterns (in order from top).

into an ISA-level emulator for the RISC-V architecture; the
model is shown in Table 2.

7. Empirical Evaluation
Programs Table 3 lists all the programs we use in our eval-
uation. These programs range from standard algorithms to
data structures and include predictable, partially predictable,
and predominantly irregular (data-driven) memory access
patterns.

Execution time results We present measurements both for
the simulator and for the actual FPGA hardware, starting
with the former because the simulator allows us to evaluate
the benefits from splitting memory into ERAM and ORAM
banks v. additionally using a scratchpad. We also discuss
the execution time results by categorizing them based on the
regularity in the programs’ access patterns.
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Non-secure Non-secure program: all variables in ERAM,
no padding, and uses scratchpad.

Baseline Secure baseline: all secret variables in a single
ORAM, no scratchpad.

Split ORAM Variables can be split across multiple
ORAM banks, or placed in ERAM. Performs
padding. No scratchpad.

Final Scratchpad on top of Split ORAM.
(a) Legends.

(b) Slowdown in comparison with non-secure version.

Figure 8. Simulator-based execution time results.

Simulator-based results Figure 8 depicts the slowdown
of various configurations relative to a non-secure configu-
ration that simply stores data in ERAM and employs the
scratchpad. Our non-secure baseline uses a scratchpad in-
stead of a hardware cache in order to isolate the cost of
MTO/ORAM. The secure Baseline configuration places
all secret variables in a single ORAM, while Split ORAM

employs the GhostRider optimization of using ERAM and
multiple ORAM banks, and Final further adds the (secure)
use of a scratchpad.

Three out of eight programs—sum, findmax, and heap-

push—have a predictable access pattern and the secure pro-
gram generated by GhostRider relies mainly on ERAM.
Hence, each MTO program (Final) has almost no slow-
down to 3.08× slowdown in comparison its non-secure
counterpart (Non-secure), and correspondingly faster than
Baseline by 5.85× to 9.03×.

For perm, histogram, and dijkstra, which have par-
tially predictable and partially sensitive memory access pat-
terns, our compiler attempts to place sensitive arrays inside
both ERAM and ORAM and also favors splitting into several
smaller ORAM banks without breaking MTO. As shown in
Figure 8, for such programs, Final can achieve a 1.30× to
1.85× speedup over Baseline (with 7.56× to 10.68× slow-
down compared to Non-secure, respectively).

For search and heappop, which have predominantly
sensitive memory access patterns, the speedup of Final

Figure 9. FPGA based execution time results: Slowdown
of Baseline and Final versions compared to non-secure
version of the program. Note that unlike Figure 8, Final
uses only a single ORAM bank and conflates ERAM and
DRAM (cf. Section 6).

over Baseline is not as significant, i.e. 1.07× and 1.12×
respectively, and is due mostly to the usage of two ORAMs
to store arrays instead of a single ORAM.

Examining the impact of the use of the scratchpad in the
results, we can see that for the first six programs, Final
reduces execution time compared to Split ORAM by a factor
from 1.05× up to 2.23×.For search and heappop, the
scratchpad provides no benefit because for these programs
all data is allocated in ORAM, as array indices are secret
(so the access pattern is sensitive), and our type system
disallows caching of ORAM blocks. The reason is that the
presence of the data in the cache could reveal something
about the secret indices. A more sophisticated type system,
or a relaxation of MTO, could do better; we plan to explore
such improvements in future work.

FPGA-based results For the FPGA we run the same set of
programs as in Table 3, but restrict the input size to be around
100 KB, due to limitations of our prototype. Speedups of
Final over the secure Baseline follow a trend similar to
the simulator, as shown in Figure 9. Regular programs have
speedups in the range of 4.33× (for heappush) to 8.94×
(for findmax). Partially regular programs like perm and
histogram get a speedup of 1.46× and 1.3× respectively.
Finally, irregular programs such as search and heappop see
very little improvements (1.08× and 1.02× respectively).

Differences between the simulator and hardware numbers
can be attributed to mulitple factors. First, the simulator im-
perfectly models the Convey memory system’s latency, al-
ways assuming the worst case, and thus slowdowns com-
pared to the non-secure baseline are often worse on the sim-
ulator (cf. heappop and heappush).

Second, the timing of certain hardware operations is dif-
ferent on the prototype and the simulator (where we consider
the latter to be aspirational, per the end of Section 6). In par-
ticular, per Table 2, the simulator models access latency for
ORAM as 4262 cycles and ERAM as 662 cycles, account-
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ing for both reading data blocks from DRAM and moving
the chosen 4KB block into the scratchpad BRAMs on the
FPGA. On the hardware, ORAM and ERAM latencies are
5991 and 1312 cycles, respectively, measured using perfor-
mance counters in the hardware design. The higher ERAM
and ORAM access times reduce the slowdown on the sim-
ulator by amplifying the benefit of the scratchpad, which is
used by the non-secure baseline, but not by the secure base-
line (cf. findmax and sum).

Third, the benefit of using the scratchpad can differ de-
pending on the input size. This effect is particularly pro-
nounced for Dijkstra, where the ratio of secure to non-secure
baseline execution is smaller for the hardware than for the
simulator. The reason is that the hardware experiment uses a
smaller input that fills only about 1/5 of a scratchpad block.
Hence, in the non-secure baseline, the block is reloaded af-
ter relatively fewer accesses, resulting in a relatively greater
number of block loads and thus bringing the performance of
the non-secure program closer to that of the secure baseline.

Finally, note that the simulator’s use of multiple ORAM
banks, and DRAM with different timings, is a source of
differences, but this effect is dwarfed by the other effects.

8. Related Work
Oblivious RAM was first proposed by Goldreich and Ostro-
vsky [21]. Since then, the community has made significant
advances [20, 22, 23, 30, 53, 54] such that it evolved from a
theoretical concept to real-life hardware prototypes [35, 40].

As an alternative to ORAM, active RAM capable of han-
dling programmable logic may also be employed, such that
memory addresses must be encrypted when transmitted over
the memory bus. One candidate technology is the Hybrid
Memory Cube [11]. Our compiler techniques are readily ap-
plicable to active RAM as well.

One line of past research has focused on designing cus-
tomized data oblivious algorithms [7, 14, 24] such that they
outperform generic ORAM simulation (i.e., placing all data
in a single ORAM). This approach, however, provides point
solutions to point problems, whereas our approach is general
purpose and requires less human effort.

Secure type systems We build on ideas we previously pro-
posed [33] for type-based enforcement of memory trace
obliviousness. Our prior approach worked for a C-like lan-
guage with only ORAM and RAM, whereas we consider
a lower-level assembly language that additionally supports
a scratchpad and ERAM; both extensions required nontriv-
ial changes. Our full type system (see the full version [32])
also supports function calls and data structures. We also built
a more full-featured compiler targeting a real architecture,
rather than evaluating using a simpler simulation.

More generally, our work is the area of work on type-
based enforcement of information-flow security [43], a topic
sometimes applied to low level languages [3, 4, 6, 8, 28, 36,
39, 55]. Compared to these, our LT type system is distin-

guished by its handling of a novel memory hierarchy. Our
type system is essentially a kind of typed assembly lan-
guage [37], but aims for information flow security rather
than memory safety (and related properties). Finally, our
compiler and type system are reminiscent of work that trans-
forms programs to eliminate timing channels [2, 5, 12, 27]
where inserted padding aims to equalize execution times.
Ultimately, however, a program that is without timing leaks
may still leak information via the memory trace.

Secure architectures HIDE [56] involves a compiler-
assisted technique to obfuscate a processor’s memory ac-
cesses but stops short of implementing provably secure
oblivious RAMs. Shroud [34] is a storage system imple-
menting ORAM using trusted co-processors (TPMs [1])
in datacenters; it uses complementary techniques to ex-
ploit parallelism in ORAM algorithms. Ascend [15–17] and
Phantom [35] are two recent projects that have introduced
adding oblivious computation to processors secure in the
XOM model [42, 47, 48]—ORAM controllers presented in
these works can be re-used in GhostRider. The key con-
ceptual difference is that our MTO system uses the pro-
gram’s logic to optimize ORAM usage, and to account for
the length of the memory trace, while Ascend and Phantom
address timing and termination channels independent of the
program’s logic and ignore the length of the trace (hence
may not terminate without leaking information).

9. Conclusion
We have presented the first complete memory trace oblivi-
ous system—GhostRider—comprising of a novel compiler,
type system, and hardware architecture. The compiled pro-
grams not only provably satisfy memory trace oblivious-
ness, but also exhibit up to nearly order-of-magnitude per-
formance gains in comparison with placing all variables in a
single ORAM bank. By enabling compiler analyses to target
a joint ERAM-ORAM memory system, and by employing a
compiler-controlled scratchpad, this work opens up several
performance optimization opportunities in tuning bank con-
figurations (size and access granularity) and, on a broader
level, into co-designing data structures and algorithms for a
heterogeneous yet oblivious memory hierarchy.
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OS-Friendly Hardware Accelerators. In WIVOSCA, 2013.

[51] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović.
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