
Chameleon Cache: Approximating Fully Associative
Caches with Random Replacement to Prevent

Contention-Based Cache Attacks

Thomas Unterluggauer∗, Austin Harris†, Scott Constable∗, Fangfei Liu∗, Carlos Rozas∗
∗Intel Corporation first.last@intel.com
†UT Austin austinharris@utexas.edu

Abstract—Randomized, skewed caches (RSCs) such as
CEASER-S have recently received much attention to defend
against contention-based cache side channels. By randomizing
and regularly changing the mapping(s) of addresses to cache
sets, these techniques are designed to obfuscate the leakage of
memory access patterns. However, new attack techniques, e.g.,
Prime+Prune+Probe, soon demonstrated the limits of RSCs
as they allow attackers to more quickly learn which addresses
contend in the cache and use this information to circumvent the
randomization. To yet maintain side-channel resilience, RSCs
must change the random mapping(s) more frequently with
adverse effects on performance and implementation complexity.

This work aims to make randomization-based approaches
more robust to allow for reduced re-keying rates and presents
Chameleon Cache. Chameleon Cache extends RSCs with a
victim cache (VC) to decouple contention in the RSC from
evictions observed by the user. The VC allows Chameleon
Cache to make additional use of the multiple mappings RSCs
provide to translate addresses to cache set indices: when a cache
line is evicted from the RSC to the VC under one of its mappings,
the VC automatically reinserts this evicted line back into the
RSC by using a different mapping. As a result, the effects of
previous RSC set contention are hidden and Chameleon Cache
exhibits side-channel resistance and eviction patterns similar to
fully associative caches with random replacement. We show that
Chameleon Cache has performance overheads of < 1% and
stress that VCs are more generically helpful to increase side-
channel resistance and re-keying intervals of randomized caches.

I. INTRODUCTION

Cache side channels have been intensively studied over the

past two decades as these allow to circumvent architectural

isolation boundaries and reveal sensitive information being

processed by applications running on the same system. Over

time, the scope of cache side channels has expanded from

cryptographic targets [5, 7, 11, 14] to other domains such

as AI [31] and the more recent transient execution attacks

(e.g., Spectre[9], Meltdown [10]) and thus sparked interest in

potential mitigations.

Fundamentally, cache side channels originate from the

intrinsic timing difference between cache hits and misses.

Attackers can use this timing difference to infer memory

access patterns in contention-based cache attacks [14, 23]

(e.g., Prime+Probe) by exploiting the limited size of cache

(sets), or in shared-memory based cache attacks [6, 32] (e.g.,

Flush+Reload) by manipulating and learning the cache state of

a cache line shared with a victim application. While software

strives to mitigate shared-memory based cache attacks (e.g., by

disabling memory deduplication and static linking of libraries)

generically mitigating contention-based attacks remains diffi-

cult for software.

Two main approaches strive to prevent contention-based

attacks in hardware: Partition-based approaches [3, 26, 27]

split the cache into two or more partitions and allow each

partition to be used by a specific security domain only. Cache

partitioning does not allow any leakage to occur between

different partitions and hence provides relatively strong se-

curity, but is difficult to scale for large numbers of security

domains and involves software to manage the partitions.

Randomization-based approaches, on the other hand, are trans-

parent to software and obfuscate cache side channel leakage

rather than prevent it completely to allow for more efficient

cache utilization.

Among the randomization-based approaches, cache-set ran-

domization (e.g., CEASER [17], CEASER-S [18], Scatter-

Cache [28], and PhantomCache [24]) has recently gained much

attention. These proposals encrypt cache line addresses to

randomize the mapping of addresses to cache sets and prevent

attackers from inferring memory access patterns from cache-

set contention. As attackers over time can learn the mapping

from observing the cache behavior, the encryption key used

by cache-set randomization needs to be regularly changed.

While cache-set randomization is a promising direction,

its security is also largely dependent on the state-of-the-art

of applicable attack strategies. New approaches to efficiently

learn the secret address-to-set mapping [15, 16, 25] pointed

out the requirement for higher re-key frequencies that hurt

performance. In addition, new analysis techniques [2] have

highlighted the possibility to even accumulate leakage across

key epochs. Consequently, there is a desire to make cache-set

randomization more robust.

A. Contribution

In this work, we improve randomization-based countermea-

sures and present Chameleon Cache to increase security and

achieve practical re-key intervals. Similar to NewCache [12],

we start with the observation that for non-partitioned caches,

13

2022 IEEE International Symposium on Secure and Private Execution Environment Design (SEED)

978-1-6654-8526-5/22/$31.00 ©2022 IEEE
DOI 10.1109/SEED55351.2022.00009

Fully Associative (FA) caches with random replacement

achieve the best side-channel resilience. Namely, FA caches

with random replacement allow every cache line address to

evict any other cache line irrespective of its address and past

usage. Thus, FA caches with random replacement are meant

to protect against fine-grained cache-set contention attacks,

but the dynamic sharing of cache resources allows for more

coarse-grained cache occupancy channels [23]. While the side-

channel properties of FA caches are desirable, they are difficult

to build within typical power and area constraints. With the

design of Chameleon Cache, we aim to approximate the

behavior of FA caches with random replacement to obtain their

side-channel properties and to simultaneously keep Chameleon
Cache’s implementation practical.

We further observe that Randomized Skewed Caches (RSCs)

like ScatterCache [28] and CEASER-S [18] use multiple

address-to-set mappings, which effectively increase the likeli-

hood of two addresses contending in the cache. To approxi-

mate a FA cache with random replacement, Chameleon Cache
thus builds upon RSCs and extends it with the concept of

a reinserting victim cache [8] (VC). The VC in Chameleon
Cache decouples evictions being observed by an attacker from

contention in the RSC: a line that is evicted from the RSC is

moved to the VC and then automatically reinserted into the

RSC using one of its alternative address-to-set mappings. As a

line is moved from the RSC to the VC, lines may get evicted

from the VC to memory, but these evictions are unrelated to

the original contention in the RSC. Eventually, we demonstrate

that Chameleon Cache shows eviction patterns that are similar

to FA caches with random replacement, thus aiming to prevent

fine-grained cache contention attacks, at < 1% performance

overhead. While Chameleon Cache resembles a FA cache with

random replacement to enjoy its security properties, we also

stress that victim caches more generally are a convenient tool

to improve the security of randomized caches as they help

add noise to the attacker’s observations without performance

degradation.

The paper is organized as follows. Section II gives back-

ground about cache attacks and countermeasures. We present

Chameleon Cache in Section III and evaluates its security

and performance in Section IV and Section V, respectively.

We generalize the victim cache idea in Section VI, compare

with related work in Section VII, and finally conclude in

Section VIII.

II. BACKGROUND

In this Section, we present background on cache attacks and

state-of-the-art countermeasures.

A. Cache Attacks

Modern computing systems make extensive use of caches

to bridge the performance gap between the CPU and memory.

However, cache structures have also been shown to allow for

information leakage in side-channel attacks. These cache side-

channel attacks make use of the intrinsic timing difference

observed depending on whether a memory request hits or

misses in the cache. An attacker can use this information about

cache hits and cache misses to understand whether a victim

application has accessed a memory location. Cache side-

channel attacks thus reveal memory access patterns that can be

used to infer sensitive information such as user behavior [23]

and cryptographic keys [11].

There are two main categories of cache side channels:

(1) Contention-based channels make use of contention in the

shared cache resource, which reveals information about the

cache usage of other applications. E.g., Prime+Probe [14] uses

fine-grained cache-set contention in set-associative caches to

infer memory access patterns at a high frequency, and cache

occupancy [23] attacks analyze coarse-grained contention that

reveals how much cache other applications use. (2) Shared-

memory based channels make use of cache lines being shared

between two applications (e.g., via shared libraries or memory

deduplication) and allows attackers to accurately determine

whether a specific cache line has been accessed or not, e.g.,

via Flush+Reload [32].

B. Cache Attack Countermeasures

1) Software: While software can in principle mitigate

shared-memory based channels by simple avoidance of shared

memory (e.g., through disabling memory deduplication and

static linking of libraries) contention-based channels are harder

to mitigate from within software. For instance, in cache

coloring [33] the operating system (OS) adjusts the virtual-

to-physical mapping to map different portions of the cache

to different security domains. While cache coloring achieves

strong isolation similar to hardware-based cache partitioning, it

is difficult to manage, hard to scale for many security domains,

and has the undesirable side effect of the binding memory

allocation of security domains to their cache allocations. As

a result, hardware-based countermeasures seem preferable to

mitigate contention-based channels.

2) Hardware: Hardware countermeasures can coarsely be

categorized in partition-based and randomization-based coun-

termeasures.

a) Cache Partitioning: Cache partitioning splits the

cache into multiple partitions where each partition can be

used by its assigned security domains only. For instance, non-

monopolizable caches [3] constructs its partitions by assigning

each security domain a distinct subset of its cache ways. An

alternative approach to partitioning is cache line pinning [27],

which provides a software interface to pin specific cache lines

in the cache that other security domains can no longer evict.

However, while way-based partitioning is difficult to scale

for many partitions, cache line pinning requires individual

software support and its extensive use can deprive other

applications from cache resources.

b) Cache Randomization: While cache partitioning aims

to completely stop side-channel leakage, randomization-based

approaches allow side-channel leakage between different se-

curity domains to occur and obfuscate the side-channel signal

to make its exploitation sufficiently hard. An example of an

14

ideal design is a fully associative cache with random replace-

ment, which, in absence of shared cache lines, can only leak

overall cache utilization. While the power demand for large

fully associative caches is typically too high, NewCache [12]

presents a more efficient implementation variant of a fully-

associative cache that uses a two-step lookup process to trade

off the properties of a fully-associative design with power and

implementation cost. Building upon the state-of-the-art set-

associative cache, RPCache [27] performs an indirect cache

lookup via random permutation tables in order to randomize

the address-to-cache mapping. While hiding the mapping be-

tween addresses and cache sets does not stop contention-based

channels, it helps to prevent attackers from directly inferring

fine-grained memory access patterns. However, implementing

RPcache is challenging as it requires software to manage

randomization tables for the indirect set lookup.

A different approach is cache-set randomization:

CEASER [17] realizes efficient randomization by encrypting

physical addresses before extracting the cache-set index

and accessing standard set-associative caches. In addition,

CEASER needs to regularly change the key to prevent

attackers from learning address-to-set mappings and ensure

long-term side channel resistance. The successor designs

CEASER-S [18] and ScatterCache [28] introduce Randomized
Skewed Caches (RSCs) that improve security by skewing [22]

the cache by its divisions. Each division consists of a few

cache ways and RSCs derive a different set index for each

division by using a different encryption key. RSCs make it

hard for attackers to find a minimal set of addresses that

map to exactly the same cache locations as a victim address

of interest (i.e., an eviction set), because the probability that

two addresses collide in all cache divisions is very low, i.e.,

p = s−d for s cache sets and d cache divisions. To overcome

this low probability, attackers can use more likely partial

collisions in the RSC. Such partially conflicting addresses

collide with the victim, e.g., in a single division only, but

also have smaller probability to evict the victim address (or

observe a victim access), i.e., d−2 if an address collides

with the victim address in a single division. An alternative

improvement over CEASER to RSCs is PhantomCache [24],

which computes several randomized cache-set indices to look

up multiple cache sets in parallel.

Previous designs based on cache-set randomization and

RSCs have been shown susceptible to advanced attack strate-

gies [16], such as the Group Elimination Method [18, 25]

and Prime+Prune+Probe [15]. For instance, Prime+Prune+
Probe (1) primes the cache with a set of candidate attacker

addresses, (2) removes candidate addresses that miss in the

cache (prune), (3) triggers the victim to access the address

of interest, and (4) probes the remaining set of candidate

addresses for cache hits / misses. A candidate address missing

in the cache has a conflict with the victim in at least one divi-

sion. While advanced attack strategies such as Prime+Prune+
Probe do not break the RSCs’ security entirely, they demand

for re-keying rates that are significantly higher than originally

envisioned. Ultimately, these higher re-keying rates can sig-

nificantly degrade performance and render the overall design

impractical. While PhantomCache appears more resilient to

these strategies [4], the design features high associativity and

thus higher power consumption.

Mirage [19] recognizes the security benefits of fully-

associative caches and builds upon the ideas of RSCs to

make fully-associative caches more practical to implement.

Mirage introduces a level of indirection between a skewed,

randomized, over-provisioned tag array and a global data array

and allows for relocating tag entries to make sure replacement

decisions are made globally and evictions in the tag array be-

come rare. However, the over-provisioning of the tag array and

indirection also leads to storage/area requirements 20% over

the baseline set-associative cache, which may be prohibitive

for some applications.

III. CHAMELEON CACHE

In the following we describe Chameleon Cache, a new

randomized cache design to increase the security against

contention-based cache attacks and thus reduce re-keying

rates.

A. Idea

Caches in modern computing systems leak memory access

patterns between several parties sharing the same cache. Fun-

damentally, this address leakage stems from two sources: First,

the organization of caches in cache sets and cache ways uses

a deterministic mapping from addresses to sets. This mapping

allows to conclude about address information from contention

in cache sets. Second, replacement policies like LRU reveal

information about the access order and timing.

On the contrary, Fully Associative (FA) caches with random

replacement do not leak address information as the selection

of physical cache lines for insertion and eviction is entirely

random. This effectively reduces the leakage for a cache that is

shared between distrusting users. Contrary to partitioned cache

designs, such FA caches with random replacement inevitably

leak cache occupancy due to sharing the cache resource, but

can attain better resource utilization.

While FA caches exhibit desirable security properties, their

area and power demand are prohibitive for larger caches. To

improve on these implementation aspects, this work presents

Chameleon Cache. Chameleon Cache mimics the statistical

properties of FA caches to inherit their security properties at

lower implementation cost.

B. Concept

Prior work on RSCs has demonstrated a significant secu-

rity improvement over set-associative caches by making it

very unlikely that two addresses map to the same set of

cache lines. However, observation of eviction patterns using

techniques like Prime+Prune+Probe[15] still allows to learn

about contention between addresses. To overcome this issue,

conceptually, Chameleon Cache combines RSCs with a small,

fully associative victim cache (VC) that automatically reinserts

elements that have been evicted from the RSC to the VC. This

15

C
a
ch
e
li
n
e
ad
d
re
ss

o
ff
se
t

RSC: 4 ways / 2 divisions

(b
1
) Evict X to VC

X V

X

Y

Victim Cache (VC)

(b
2
) Evict V to memory

(b
3
) Swap X and Y

idx0

idx1

C
or
e
re
q
u
es
t:
 a
d
d
r.
 C

idx1(X)

idx1(C)

idx0({C,X}) X

Y

VC
(a) Swap
C and Y

C

ID
F

Fig. 1. Concept of Chameleon Cache for handling a core request C. Request C and address X translate to the blue striped and the gray shaded lines,
respectively. Flows (a) and (b) show the cases for a hit in the VC and eviction from the RSC, respectively.

VC breaks the link between evictions from Chameleon Cache
and contention in the RSC, results in eviction patterns similar

to a FA cache with random replacement, and thus makes it

harder for attackers to successfully learn RSC contention.

The example in Figure 1 depicts the concept in more detail:

When the core issues a request to address C, Chameleon
Cache first computes the indices the request maps to in each

RSC division via an index derivation function (IDF) and

performs look-ups to both the RSC and the VC in parallel.

1) If the request hits in the RSC, the line is simply returned.

2) If the request hits in the VC, the line is returned and also

reinserted in one of the RSC sets previously determined

for line C. If this reinsertion of C conflicts with another

line Y in the RSC, (a) Y is put in place of C in the VC,

i.e., C and Y are swapped.

3) If the request to address C misses in both the RSC and the

VC, the line C is fetched from memory and inserted into

one randomly chosen RSC division, where the concrete

set index has been determined for line C before.

Upon insertion of line C into the RSC, division D0 in

Figure 1, (b1) this line C may conflict with some line X
stored in the RSC before, which results in the line X to

be moved to the VC. Moving the line X to the VC may

cause (b2) eviction of a line V previously present in the

VC to the memory.

Later, the VC tries to reinsert X into the RSC, likely in

a different cache way or division. If this reinsertion of X
conflicts with another line Y in the RSC, (b3) Y is put in

place of X in the VC, i.e., the lines X and Y are swapped.

C. Specification

Chameleon Cache uses an RSC with s sets, w ways and

N = s·w lines that are organized in 1 ≤ d ≤ w divisions. The

divisions D0, D1, . . . , Dd−1 each consist of w
d ways, where

each RSC way is mapped to a single division only. The RSC is

skewed by its divisions: when accessing the cache, a different

index idxi is used to select the set Si,idxi
in each division Di.

The RSC uses an IDF to compute the divisions’ set indices

idx0, idx1, . . . , idxd−1 from the requested cache line address.

Algorithm 1 Init

Input: RSC with w ways, s set indices and d divisions, VC

Output: Initialized RSC and VC

1: for 0 ≤ i < d, 0 ≤ j < s, 0 ≤ k < w
d do

2: RSC[i][j][k]← ⊥
3: end for
4: V C[i]← ⊥ ∀ 0 ≤ i < wV C

5: idxV C,insert ← 0
6: idxV C,reinsert ← 0

The pseudo-random mapping given by the IDF is regularly

changed, e.g., by changing its keys.

Chameleon Cache uses a fully associative victim cache

(VC) with wV C ways. Cache lines evicted from the RSC are

moved to the VC, which performs automatic reinsertion into

the RSC to increase security and the interval for changing

the IDF mapping. The VC maintains two indices idxV C,insert

and idxV S,reinsert to keep track of the last item that has been

inserted into the VC and re-inserted into the RSC, respectively.

In addition, requests that hit in the VC result in automatic

reinsertion of the respective line into the RSC.

Chameleon Cache uses a set of different algorithms to

perform its operations. Init in Algorithm 1 initializes the

cache. IDF in Algorithm 2 performs the mapping of cache

line addresses to RSC sets. Lookup in Algorithm 3 describes

the lookup of a cache line address in Chameleon Cache. RSC
Insert in Algorithm 4 specifies the insertion of a new cache

line into Chameleon Cache. RSC Reinsert in Algorithm 5

performs reinsertion of a cache line from the VC to the

RSC. Automatic RSC Reinsert in Algorithm 6 is periodically

triggered to initiate automatic reinsertion of lines from the VC

to the RSC. Note that the respective counters idxV C,insert and

idxV C,reinsert automatically wrap around when they reach

wV C . For simplicity, all algorithms omit the wrap-around

logic.

a) Index Derivation Function: Algorithm 2 implements

the IDF using a cryptographic block cipher E. However, the

IDF may also be implemented based on other primitives, such

16

Algorithm 2 Index Derivation Function (IDF)

Input: address A, keys K0, ...,Kd−1

Output: indices idx0, ..., idxd−1 for d RSC divisions

1: for 0 ≤ i < d do
2: Aenc,i ← EKi(A)
3: idxi ← �Aenc,i�log2 s // Slice out log2 s bits

4: end for
5: return idx0, ..., idxd−1

Algorithm 3 Lookup

Input: address A, keys K0, ...,Kd−1

Output: data at address A

1: idx0, ..., idxd−1 ← IDF (A,K0, ...,Kd−1)
2: Hit ← false
3: for 0 ≤ i < d do
4: for 0 ≤ j < w

d do
5: if RSC[i][idxi][j].tag = A then
6: Data ← RSC[i][idxi][j].data
7: Update RSC[i][idxi].lru state if required

8: Hit ← true
9: end if

10: end for
11: end for
12: for 0 ≤ i < wV C do
13: if V C[i].tag = A then
14: Data ← V C[i].data
15: Hit ← true
16: RSCReinsert(i)
17: end if
18: end for
19: if VCHit and RSCHit then
20: Data ← memory[A]
21: RSCInsert(Data, idx0, ..., idxd−1)
22: end if
23: return Data

as (keyed) hash functions H . A suitable IDF must guarantee

that (1) the keys remain secret as attackers observe addresses

mapping to the same index (collisions), (2) addresses that have

index collisions under one key KA have an index collision

with a different key KB only with negligible probability.

Moreover, the IDF should be efficient to implement to ensure

low access latencies.

D. Indistinguishability

A main security requirement for Chameleon Cache is the

indistinguishability of RSC and VC. Namely, implementations

of Chameleon Cache must ensure that attackers cannot distin-

guish whether a line is in the RSC or in the VC. Otherwise,

attackers would be able to recognize contention in the RSC

by monitoring when lines are (temporarily) moved to the VC.

The requirement of indistinguishability implies that implemen-

tations must make sure that (a) RSC and VC show the same

Algorithm 4 RSC Insert

Input: data D, address A, indices idx0, ..., idxd−1

1: d̂
$← {0, ..., d− 1}

2: In set RSC[d̂][idxd̂]: select victim line index v according

to replacement policy

3: if RSC[d̂][idxd̂][v].tag �= ⊥ then
4: idxV C,insert ← idxV C,insert + 1
5: if V C[idxV C,insert].tag �= ⊥ then
6: Evict line at V C[idxV C,insert] to memory

7: end if
8: V C[idxV C,insert]← RSC[d̂][idxd̂][v]
9: end if

10: RSC[d̂][idxd̂][v].data← D

11: RSC[d̂][idxd̂][v].tag ← A

12: Update replacement bits in set RSC[d̂][idxd̂] if necessary

Algorithm 5 RSC Reinsert

Input: VC line index idxvc to be reinserted into the RSC

1: idx0, ..., idxd−1 ← IDF (V C[idxvc].tag)

2: d̂
$← {0, ..., d− 1}

3: In set RSC[d̂][idxd̂]: select victim line index v according

to replacement policy

4: Swap RSC[d̂][idxd̂][v] and V C[idxvc]

5: Update replacement bits in RSC[d̂][idxd̂] if necessary

access latency for cache hits and (b) there are no observable

side effects when lines transition between the RSC and VC and

vice versa. Thus, a first step to achieve indistinguishability is a

cache pipeline that returns the results from VC and RSC in the

same pipeline stage as this can provide the same access latency

for both RSC and VC. However, this list is non-exhaustive and

a concrete implementation may require additional measures to

be taken to guarantee indistinguishability.

IV. SECURITY ANALYSIS

As Section III showed, Chameleon Cache extends RSCs

with a VC and automatic reinsertion to improve the security

and thus reduce required re-keying intervals. In the following,

we analyze the security of Chameleon Cache and compare it to

other works. Our analysis consists of a qualitative analysis of

the cache’s eviction behavior, a probabilistic analysis that for-

malizes the relative difficulty of contention-based attacks with

Chameleon Cache, and a quantitative empirical analysis using

a cache attack simulation framework. While our specification

of Chameleon Cache is agnostic to the replacement strategy of

the RSC, we note that stateful replacement strategies like LRU

come with additional side-channel leakage [30] and hence we

focus our analysis on random replacement.

A. Victim Cache

Chameleon Cache extends RSCs with a VC to break the

direct link between cache conflicts in the RSC and the cache

17

Algorithm 6 Automatic RSC Reinsert

1: while idxV C,reinsert < idxV C,insert do
2: RSCReinsert(idxV C,reinsert)
3: idxV C,reinsert ← idxV C,reinsert + 1
4: end while

misses that may be observed, e.g., in Prime+Prune+Probe. As

Figure 1 shows, when a cache line C is inserted into the RSC

and evicts another line X to the VC, the cache conflict is

hidden as both lines C and X will hit in the cache afterwards.

In addition, a line V potentially being evicted from the VC to

the memory is uncorrelated to the cache conflict in the RSC.

Without reinsertion of the evicted line, however, the attacker

may be able to inspect the contents of the VC and yet learn

about the conflict. For instance, an attacker could access

a set of random, uncached addresses to force cache lines

being moved to the VC. This would eventually flush the lines

previously stored in the VC to the memory, giving the attacker

a measurable side-channel about the VC. Note however that

profiling RSC cache contention via flushing the VC adds noise

to the attacker’s measurements, i.e., the attacker will observe

cache misses on lines that were previously present in the

VC but are unrelated to the RSC contention introduced by

accessing C. Intuitively, the number of false positives grows

with the size of the VC.

To prevent attackers from learning about RSC contention

via the VC, Chameleon Cache automatically reinserts cache

lines, which have been evicted from the RSC to the VC, back

into the RSC (cf. Algorithm 6). As a cache line X , which has

been evicted by line C from the RSC to the VC, is reinserted

into the RSC, two possible situations can arise:

1) Reinsertion into a different cache way: Reinsertion of a

line X to the RSC results in another line Y being placed

into the VC, i.e., X and Y are swapped. This makes the

RSC conflict between C and X invisible, as eventually

both will be stored in the RSC again. Cache line Y in

the VC, on the other hand, is either invalid or does not

directly relate to the contention between C and X in the

RSC.

2) Reinsertion into the same cache way: X is reinserted

into the same cache way it was evicted from, i.e., X and

C are swapped. As a result, X is stored in the RSC and

C in the VC, thus making the previous RSC contention

invisible.

Note that the attacker may be able to re-access C in order

to bring C back into the RSC. In this case, a line Z
is swapped with C, which results in Z and C being

in the VC and RSC, respectively. This line Z, which

may be the original line X , directly contends with C
in the RSC. While an attacker might be able to learn

Z by flushing the VC, using Z meaningfully remains

hard. Namely, whenever Z evicts C from the RSC, the

automatic reinsertion mechanism will move C back into

the RSC and hence make the conflict invisible.

B. Second-Order Collisions

The principle of automatic reinsertion still affects the cache

state and intuitively bears second-order leakage. More con-

cretely, and as Figure 1 shows, accessing a line C that conflicts

with a line X can lead to another line Y ending up in the VC,

potentially making this line Y visible to attackers who are

able to flush the VC. While Y is not directly conflicting with

the line C, C and Y are connected via the conflicting line X
that goes to the VC and back to the RSC. X conflicts both

with C and Y in at least one division each and may thus

serve as a proxy in a cache attack. Note, however, since there

are multiple divisions in the RSC, this does not imply that C
and Y conflict. We in the following denote such addresses Y
second-order addresses.

Attackers may be able to learn about second-order addresses

and use them in an attack to measure RSC contention with C.

In Figure 1, C may evict line Y to the VC via the proxy X
and flushing Y from the VC as described in Section IV-A may

then allow an attacker to observe the contention. Yet, second-

order addresses are hard to exploit in practice for multiple

reasons.

1) Indistinguishability: For profiling strategies like Prime+
Prune+Probe, an attacker observing a cache miss after

flushing the VC cannot determine whether they sampled

a second-order address or a completely unrelated address.

This effectively increases the number of addresses needed

for an eviction set and hence noise.

2) Unknown proxy address: Attackers do not know

the proxy address X , because it cannot be observed.

However, the second-order address Y is only valuable

for attackers if they know and insert X before, i.e., X is

a proxy for Y and is required to evict C.

Moreover, since X is unknown, a second-order address Y
that is collected by the attacker is as good as a random

address: Without X , Y has the same probability as a

randomly chosen address to evict C.

3) Prevalence of proxy addresses: An attacker observing

a miss on the second-order address Y via proxy X is

unlikely to find another proxy X ′ which collides with

both C and Y in different divisions. A randomly chosen

address is a proxy for C and Y with a probability p ≈
w2

s2 if d = w, e.g., 1 in 16384 addresses are a suitable

proxy in a cache with 2048 sets and 16 ways. However,

an arbitrarily chosen address itself has higher probability

of directly featuring a partial collision with C, roughly

p = 1− (s−1)w

sw ≈ 2−8 for the same cache configuration.

Note that that when X contends with Y and C in the

same division, Y may directly evict C from the RSC,

but automatic reinsertion of C will make this contention

invisible.

4) Success probability: Even if attackers know the proxy

X , the probability of evicting the line C from the RSC

to the VC using the second-order address Y and vice

versa is low. Namely, this approach requires (1) C and

X to reside in the correct cache divisions before, (2) Y

18

 1

 10

 256 512 1024 2048 4096 8192

Re
la

tiv
e

Ev
ict

io
n

En
tro

py
 [b

its
]

Number of cache lines

Side Channel Leakage per Access

Chameleon (16 ways, 16 div., 8 VC)
Chameleon (16 ways, 8 div., 8 VC)
Chameleon (16 ways, 4 div., 8 VC)
Chameleon (16 ways, 2 div., 8 VC)

Chameleon (8 ways, 8 div., 8 VC)
Chameleon (16 ways, 8 div., 2 VC)

CEASER-S (16 ways, 16 divisions)
CEASER-S (16 ways, 8 divisions)
CEASER-S (16 ways, 4 divisions)
CEASER-S (16 ways, 2 divisions)

CEASER (16 ways)
Fully associative

Fig. 2. Relative eviction entropy for Chameleon Cache compared to
CEASER, CEASER-S, and a fully associative cache.

needs to be inserted such as to evict X , and (3) X must

be reinserted such as to evict C to the VC. For random

replacement, RSC eviction using second-order addresses

thus has a success probability of only w−4, e.g., 2−16 for

a 16-way cache. For a 16-way cache with 2048 lines, it

would hence require more addresses than fit in the cache

to with high probability evict the target address into the

VC by using second-order addresses. Moreover, once C
has been moved to the VC, attackers further need to flush

the VC with random addresses, which adds more noise

through contention required in the RSC.

C. Relative Eviction Entropy

We used the cache security framework CacheFX [4] to

implement a model for Chameleon Cache and comprehen-

sively test and compare it to state-of-the-art cache designs.

In Figure 2, we evaluated the relative eviction entropy of

Chameleon Cache, CEASER, CEASER-S, and a fully asso-

ciative cache for increasing cache sizes and with all these

caches using random replacement. Figure 2 shows that the

information leakage is significantly lowered for Chameleon
Cache compared to prior cache randomization techniques. For

instance, adding a victim cache to 16-way 8192-line CEASER-

S with 16 divisions reduces information leakage per eviction

from 5 to 0.4 bits. Further note that the relative eviction

entropy is the same for instances of Chameleon Cache that

only differ in their VC size.

D. Eviction Set Success Rate

To demonstrate the security of Chameleon Cache w.r.t.

Prime+Prune+Probe, we compare the eviction success rate

of eviction sets constructed with Prime+Prune+Probe on

Chameleon Cache to the eviction success rate for a set of ran-

domly chosen addresses. Using CacheFX [4], we run Prime+
Prune+Probe and sample a random set of addresses M = 1000
times to form eviction sets of 4 · w addresses for a random

target and evaluate the success rate of each eviction set. The

success rate of each eviction set is determined by trying to

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 256 512 1024 2048 4096 8192 16384

Ev
ict

io
n

pr
ob

ab
ilit

y

Number of cache lines

Eviction Probability (8 divisions)

Chameleon (16 ways, 8 VC) Random
Chameleon (8 ways, 8 VC) Random

Chameleon (16 ways, 2 VC) Random
Chameleon (8 ways, 2 VC) Random

CEASER-S (16 ways) Random
CEASER-S (8 ways) Random

Chameleon (16 ways, 8VC) PPP
Chameleon (8 ways, 8VC) PPP

Chameleon (16 ways, 2VC) PPP
Chameleon (8 ways, 2VC) PPP

CEASER-S (16 ways) PPP
CEASER-S (8 ways) PPP

Fig. 3. Eviction success rates of eviction sets constructed via Prime+
Prune+Probe compared to randomly selected addresses. All caches are
operated with 8 divisions

 0.1

 1

 10

 100

 1000

 256 512 1024 2048 4096 8192 16384

t = 4.5 (99.999%)T-
Va

lu
e

Number of cache lines

Random vs PPP: T-Test (8 divisions, 1000 iterations)

Chameleon (16 ways, 8 VC)
Chameleon (8 ways, 8 VC)

Chameleon (16 ways, 2 VC)

Chameleon (8 ways, 2 VC)
CEASER-S (16 ways)

CEASER-S (8 ways)

Fig. 4. T-values for the eviction success rates of eviction sets constructed via
Prime+Prune+Probe compared to randomly selected addresses.

evict the target address 1000 times and compute the mean over

all experiments. We show the mean eviction success rates for

different configurations of Chameleon Cache and CEASER-S

in Figure 3 and the M experiments. In this evaluation, we

operate all caches with 8 divisions and experimented with 2

and 8 victim cache lines for Chameleon Cache as well as 8 and

16 cache ways. While CEASER-S shows a strong difference

in the eviction success rate for eviction sets constructed via

random sampling and Prime+Prune+Probe, Chameleon Cache
does not yield an observable difference.

To investigate the properties of Chameleon Cache further,

we also determine the statistical variance of the M eviction

success rates and compute the t-value [21]. We reject the

hypothesis that the mean success rates for eviction sets from

Prime+Prune+Probe and random sampling are equal with a

confidence of 99.999% if |t| > 4.5.

Figure 4 shows that the t-value stays largely below the

threshold of 4.5 for Chameleon Cache, suggesting that attack-

ers do not have a clear advantage from constructing eviction

19

 0

 0.2

 0.4

 0.6

 0.8

 1

 256 512 1024 2048 4096 8192 16384

Tr
ue

 P
os

iti
ve

 R
at

e

Number of Cache Lines

True Positive Rate

Chameleon (16 ways, 16 div., 8 VC)
Chameleon (16 ways, 16 div., 2 VC)

Chameleon (16 ways, 2 div., 8 VC)

Chameleon (16 ways, 2 div., 2 VC)
CEASER-S (16 ways, 16 divisions)

CEASER-S (16 ways, 2 divisions)

Fig. 5. Rate of addresses in the eviction set that are truly conflicting with
the victim address.

sets with Prime+Prune+Probe over random sampling. On the

other hand, eviction sets built with Prime+Prune+Probe for

CEASER-S have success rates clearly distinguishable to suc-

cess rates of randomly assembled eviction sets. Note however

that for Chameleon Cache and a larger number of different

experiments M there is statistically measurable difference

between eviction sets constructed via Prime+Prune+Probe and

random sampling according to the t-statistics. Yet, we argue

that this difference is small enough not to be relevant in

practice.

E. Eviction Set Profiling

We evaluated the properties of Prime+Prune+Probe, the

currently most-efficient algorithm to construct eviction sets for

skewed caches, in more detail. Figure 5 shows the fraction of

addresses found by Prime+Prune+Probe in a noise-free setting

that are truly conflicting in at least one division with the

victim address. While for CEASER-S this True Positive Rate

(TPR) in the absence of noise is consistently 1, the TPR is

clearly lower for all configurations of Chameleon Cache and

decreases with cache size. The TPR is generally smaller for 2

divisions than for 8 divisions, because more divisions increase

the probability of random conflicts in any of the divisions.

Figure 6 shows the number of read accesses that need to

be done by the attacker in order to find one address that is

truly conflicting with the victim address, i.e., not noise. The

effort for finding such address is one order of magnitude higher

for Chameleon Cache compared to CEASER-S with larger

instances of Chameleon Cache having even higher relative

profiling cost. Overall, Chameleon Cache increases the cost of

profiling and significantly decreases the value of the eviction

sets found via Prime+Prune+Probe.

F. Cache Occupancy

Recent work [23] demonstrated scenarios that exploit side-

channel leakage stemming from cache occupancy. Like fully

associative caches with random replacement, Chameleon
Cache does not protect against this cache occupancy leakage.

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1x109

 256 512 1024 2048 4096 8192 16384

Nu
m

be
r o

f R
ea

d
Ac

ce
ss

es

Number of Cache Lines

Read Accesses Per Colliding Address Found

Chameleon (16 ways, 16 div., 8 VC)
Chameleon (16 ways, 16 div., 2 VC)

Chameleon (16 ways, 2 div., 8 VC)

Chameleon (16 ways, 2 div., 2 VC)
CEASER-S (16 ways, 16 divisions)

CEASER-S (16 ways, 2 divisions)

Fig. 6. Number of memory accesses required by the attacker to find one truly
conflicting address.

OS Redhat 8 with Linux kernel 5.4.49System
Processor 4 x86 OoO Cores at 3GHz

Predictor LTAGE and Indirect Predictor, 512-entry BTB

Fetch 5 wide Fetch, Decode, Rename, 224-entry ROB

Dispatch 8 wide Dispatch, Issue, Writeback, 97-entry IQ

C
or

e

Exec
4 INT ALUs, 3 INT VectU, 2 FP FMAs,

168/180 Phys. Reg., 72/56-entry Ld/St Buffer

L1-I/D 32kB, 8-way, 2/4 cycles, 16-entry MSHR, Random Replacement

L2 256kB, 4-way, 10 cycles, 20-entry MSHR, Random Replacement

Shared L3 16MB, 16-way, 40 cycles, 256-entry MSHR, stride prefetch

M
em

or
y

DRAM
8GB 4 Channel DDR4-2400, 38.4GB/s

Peak Bandwidth, Latency from DRAMSim2

TABLE I
GEM5 FULL-SYSTEM SIMULATION CONFIGURATIONS [29]

Note however that cache occupancy leakage is very coarse-

grained, has only limited temporal resolution, and is inevitable

for any shared cache design. We thus believe that the security

properties offered by Chameleon Cache will be sufficient in

most cases.

V. EVALUATION

We use the cycle-accurate gem5 [1, 13] simulator to eval-

uate Chameleon Cache. Table I shows the baseline simu-

lator configuration based on a Skylake processor. We run

SPECRate2017 with 4 copies in full-system mode, and gather

statistics using a sampling methodology based on pFSA [20]

due to the long execution time of SPEC reference inputs. In

this sampling methodology, we execute each benchmark using

hardware virtualization (i.e., the gem5 KVM CPU) to record

the total instructions and generate 1000 random samples. Next,

we quickly fast-forward to each sample using KVM and then

perform functional warm-up of the caches for 10 million

instructions with the atomic CPU, switch to detailed warm-up

for 6 million instructions, and finally record detailed statistics

for 5 million instructions with the Skylake CPU.

Figure 7 depicts the relative Instructions-Per-Cycle (IPC)

for CEASER-S and Chameleon Cache with varying division

counts. Note that ScatterCache can be viewed as an instance

of CEASER-S with 16 divisions. It shows that on average the

20

relative IPC drops for CEASER-S with a higher number of

divisions, whereas Chameleon Cache, except for 16 divisions,

is less sensitive to the division count. This results in better

average performance than for previous RSC proposals and

helps some workloads, e.g., wrf and mcf, to perform even

better than the baseline design from Table I. Generally, the rel-

ative performance impact is very small, i.e., <1% on average,

and ranges between -10% and +5% for individual workloads.

Figure 8 further shows the relative miss rate for the shared

Chameleon Cache L3/LLC cache. Except for 16 divisions,

Chameleon Cache on average features a miss rate and relative

IPC equal to the baseline. For individual workloads, miss

rate and relative IPC range between -10% and +5%. In some

cases the victim cache reinsertion can improve performance

by helping spread hot sets out to other partitions. In addition,

we measured the frequency of contention events between

the reinsertion of victim cache entries and incoming cache

requests, but saw no conflicts in our experiments. In terms

of area, Chameleon Cache with an 8-way VC must maintain

8 additional cache lines per cache slice, which amounts to

<0.1% additional storage for the architecture specified in

Table I.

perlbench

gcc

bw
aves

m
cf

cactuBSSN

nam
d

povray

lbm

om
netpp

w
rf

xalancbm
k

x264

blender

cam
4

deepsjeng

im
agick

leela

nab

exchange2

fotonik3d

rom
s

xz gm
ean

0.8

0.85

0.9

0.95

1

1.05

1.1

CEASER (16 ways) CEASER-S (16 ways, 2 divisions) CEASER-S (16 ways, 4 divisions)
CEASER-S (16 ways, 16 divisions) Chameleon (16 ways, 1 div., 8 VC) Chameleon (16 ways, 2 div., 8 VC)
Chameleon (16 ways, 4 div., 8 VC) Chameleon (16 ways, 16 div., 8 VC)

Benchmark

Re
la

ti
ve

 IP
C

Fig. 7. Relative Instructions Per Cycle (IPC) for SPECRate2017 with 4 copies.

perlbench

gcc

bw
aves

m
cf

cactuBSSN

nam
d

povray

lbm

om
netpp

w
rf

xalancbm
k

x264

blender

cam
4

deepsjeng

im
agick

leela

nab

exchange2

fotonik3d

rom
s

xz gm
ean

0.8

0.85

0.9

0.95

1

1.05

1.1

CEASER (16 ways) CEASER-S (16 ways, 2 divisions) CEASER-S (16 ways, 4 divisions)
CEASER-S (16 ways, 16 divisions) Chameleon (16 ways, 1 div., 8 VC) Chameleon (16 ways, 2 div., 8 VC)
Chameleon (16 ways, 4 div., 8 VC) Chameleon (16 ways, 16 div., 8 VC)

Benchmark

Re
la

ti
ve

 L
LC

 M
is

s
Ra

te

Fig. 8. Relative LLC Miss Rate for SPECRate2017 with 4 copies.

21

VI. VARIANTS

While Chameleon Cache aims to mimic a fully associative

cache with random replacement and its security properties,

the design principle of adding a victim cache to decouple

contention in a RSC from evictions observed by users is

applicable more generally. In the following, we thus lay out

several design variants that can as well increase security over

a baseline RSC.

A. Chameleon Cache without Reinsertion

A first simplification of Chameleon Cache is to omit its

automatic reinsertion functionality, i.e., to simply extend a

RSC with a fully associative VC. This fully associative victim

cache can use first-in first-out replacement like Chameleon
Cache, or implement random replacement to add more noise

to the design’s eviction patterns. The disadvantage of omitting

automatic reinsertion is that contention in the RSC is more

easily observable if attackers can flush the VC, e.g., by

creating contention in the RSC. However, as indicated in

Section IV-A and as depicted in Figure 9, this adds noise

and thus profiling cost proportional to the size of the VC and

hence helps reduce re-key rates accordingly.

 0

 20

 40

 60

 80

 100

 2 4 8 16 32 64 128 256 512 1024

Pe
rc

en
ta

ge
 [%

]

Victim Cache Lines

Victim Cache Sampling Noise

Noisy Sample Rate Valid Sample Rate

Fig. 9. Rate of noisy samples and truly conflicting samples when performing
eviction set profiling [16] in randomized set-associative caches with various
victim cache sizes.

We expect random accesses stemming from the system’s

background noise to be equivalent to an attacker creating

pseudo-random contention in the RSC in terms of their ability

to flush the VC. Consequently, some open questions are (1) to

what extent system noise and the attacker’s specific behavior

compose, (2) whether system noise itself is sufficient to make

RSC contention visible, and (3) what impact system noise has

on security overall.

B. Cache-Set Randomization with a Victim Cache

Another simplification is to omit the complexity of

cache skewing and extend cache-set randomization like

CEASER [17] with a fully associative VC. As before, the

VC will decouple evictions being observed from contention

in the randomized cache and thus add noise proportional to

the VC size and help reduce re-key intervals. One additional

drawback is the smaller number of effective cache sets in this

design, which may allow the attacker to exhaustively build

eviction sets for all the cache sets and more easily find patterns

of interest. More importantly, once the attacker has crafted

one eviction set for one set in the cache, the attacker can use

these to accurately create contention in the randomized, set-

associative cache that will more reliably flush the VC and help

any profiling or attack further on.

C. Randomized (Skewed) Cache with a Set-Associative Victim
Cache

As Figure 9 shows, the noise level introduced by the VC

increases proportional to its size. As this can lead to smaller

re-keying rates, a larger VC is desirable. However, there is a

practical size limit for fully associative (victim) caches due to

power and area constraints. To yet realize large VC sizes, a

more aggressive design variant is to replace the fully associa-

tive VC with a set-associative VC that, like the randomized

(skewed) main cache, uses a secret mapping to derive the

set index. This randomized, set-associative VC would still be

smaller than the randomized main cache and could as well be

subject to re-keying. Interestingly, if the main cache uses pure

set-randomization like CEASER, a randomized, set-associative

VC adds a second-level mapping similar to cache skewing,

but without the necessity to touch the baseline cache’s set-

associative structure. It seems a relevant question if this two-

level design is indeed equivalent to RSCs or has different

security properties and, e.g., allows for new attacks.

VII. COMPARISON

The objective and design of Chameleon Cache bears some

similarity to Mirage [19]: both aim to mimic the behavior of

a fully-associative cache with random replacement and extend

the concept of RSCs. Moreover, the reinsertion policy of

Chameleon Cache behaves similar to cuckoo relocation as pre-

sented for Mirage, but serves a different purpose: Chameleon
Cache uses reinsertion to increase effective associativity,

whereas Mirage implements cuckoo relocation to reduce the

likelihood of conflicts in the skewed, over-provisioned tag

array.

However, there are also some major differences between

Chameleon Cache and Mirage: Mirage is designed to make

global replacement decisions as in a fully-associative cache,

whereas Chameleon Cache uses RSC reinsertion to obtain

eviction patterns that look similar to fully associative caches.

Moreover, Chameleon Cache features lower area overheads as

it does not require indirection pointers nor over-provisioning

of the tags, but may introduce higher cache activity from

reinsertion. Both Chameleon Cache and Mirage show low

overheads of <1% and 2% on spec2017, respectively. Last,

Chameleon Cache introduces the concept of victim caches to

RSCs to hide contention in the cache eviction pattern and stage

re-insertions. As highlighted in Section VI, this victim cache

is a versatile tool that thus may also be used to extend Mirage

and improve its properties and trade-offs.

22

VIII. CONCLUSION

Recent analysis of cache randomization has demonstrated

new approaches, e.g., Prime+Prune+Probe, to more efficiently

learn how addresses map to cache sets and calls for more fre-

quent re-keying to maintain side-channel resilience. However,

increasing the re-keying rate comes with higher performance

overheads and implementation cost. As a result, this work

presented Chameleon Cache to make cache-set randomization

more robust and facilitate reduced re-keying intervals. With the

aim to mimic FA caches with random replacement, Chameleon
Cache extends RSCs with a fully associative victim cache

(VC) and automatic reinsertion. This additional VC hides con-

tention occurring in the Randomized Skewed Caches (RSC)

by decoupling the RSC contention from evictions being ob-

served by system users. More importantly, Chameleon Cache
leverages the multiple mappings available in skewed caches

to automatically reinsert lines moved to the VC back into

the RSC in a potentially different division (with a different

mapping). This automatic reinsertion mechanism is designed

to revert the original RSC contention and pick an alternative

eviction candidate and seeks to obtain eviction patterns that

are similar to eviction patterns of fully-associative (FA) caches

with random replacement. Thus, Chameleon Cache can resist

fine-grained contention-based attacks and reduce its attack

surface to cache utilization channels as in FA caches with rand.

replacement. We evaluated the performance of Chameleon
Cache in gem5 showing overheads of < 1% and highlighted

the versatility of the VC in alternative designs to increase side-

channel resilience and reduce re-keying rates in randomized

caches.

REFERENCES

[1] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,

A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,

and S. Sardashti, “The gem5 simulator,” ACM SIGARCH
Computer Architecture News, vol. 39, no. 2, pp. 1–7,

2011.

[2] T. Bourgeat, J. Drean, Y. Yang, L. Tsai, J. S. Emer, and

M. Yan, “Casa: End-to-end quantitative security analysis

of randomly mapped caches,” in 53rd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO
2020, Athens, Greece, October 17-21, 2020. IEEE,

2020, pp. 1110–1123. [Online]. Available: https://doi.

org/10.1109/MICRO50266.2020.00092

[3] L. Domnitser, A. Jaleel, J. Loew, N. B. Abu-Ghazaleh,

and D. Ponomarev, “Non-monopolizable caches: Low-

complexity mitigation of cache side channel attacks,”

TACO, vol. 8, no. 4, pp. 35:1–35:21, 2012.

[4] D. Genkin, W. Kosasih, F. Liu, A. Trikalinou,

T. Unterluggauer, and Y. Yarom, “Cachefx: A

framework for evaluating cache security,” CoRR,

vol. abs/2201.11377, 2022. [Online]. Available:

https://arxiv.org/abs/2201.11377

[5] L. Groot Bruinderink, A. Hülsing, T. Lange, and

Y. Yarom, “Flush, Gauss, and reload - a cache attack
on the BLISS lattice-based signature scheme,” in CHES,

2016, pp. 323–345.

[6] D. Gruss, C. Maurice, K. Wagner, and S. Mangard,

“Flush+Flush: A fast and stealthy cache attack,” in

DIMVA, 2016, pp. 279–299.

[7] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games -

bringing access-based cache attacks on AES to practice,”

in IEEE SP, 2011, pp. 490–505.

[8] N. P. Jouppi, “Improving direct-mapped cache perfor-

mance by the addition of a small fully-associative cache

and prefetch buffers,” ACM SIGARCH Computer Archi-
tecture News, vol. 18, no. 2SI, pp. 364–373, May 1990.

[9] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,

W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,

M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting

speculative execution,” in IEEE SP, 2019, pp. 1–19.

[10] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,

A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,

Y. Yarom, and M. Hamburg, “Meltdown: Reading kernel

memory from user space,” in USENIX Security, 2018,

pp. 973–990.

[11] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-

level cache side-channel attacks are practical,” in IEEE
SP, 2015, pp. 605–622.

[12] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure

cache architecture thwarting cache side-channel attacks,”

IEEE Micro, vol. 36, no. 5, pp. 8–16, 2016.

[13] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian,

R. Amslinger, M. Andreozzi, A. Armejach, N. Asmussen,

B. Beckmann, S. Bharadwaj, G. Black, G. Bloom,

B. R. Bruce, D. R. Carvalho, J. Castrillon, L. Chen,

N. Derumigny, S. Diestelhorst, W. Elsasser, C. Es-

cuin, M. Fariborz, A. Farmahini-Farahani, P. Fotouhi,

R. Gambord, J. Gandhi, D. Gope, T. Grass, A. Gutierrez,

B. Hanindhito, A. Hansson, S. Haria, A. Harris, T. Hayes,

A. Herrera, M. Horsnell, S. A. R. Jafri, R. Jagtap,

H. Jang, R. Jeyapaul, T. M. Jones, M. Jung, S. Kannoth,

H. Khaleghzadeh, Y. Kodama, T. Krishna, T. Marinelli,

C. Menard, A. Mondelli, M. Moreto, T. Mück, O. Naji,

K. Nathella, H. Nguyen, N. Nikoleris, L. E. Olson,

M. Orr, B. Pham, P. Prieto, T. Reddy, A. Roelke,

M. Samani, A. Sandberg, J. Setoain, B. Shingarov, M. D.

Sinclair, T. Ta, R. Thakur, G. Travaglini, M. Upton,

N. Vaish, I. Vougioukas, W. Wang, Z. Wang, N. Wehn,

C. Weis, D. A. Wood, H. Yoon, and É. F. Zulian, “The

gem5 Simulator: Version 20.0+,” arXiv:2007.03152 [cs],

Sep. 2020.

[14] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks

and countermeasures: The case of AES,” in CT-RSA,

2006, pp. 1–20.

[15] A. Purnal, L. Giner, D. Gruss, and I. Verbauwhede,

“Systematic analysis of randomization-based protected

cache architectures,” in IEEE SP, 2021.

[16] A. Purnal, F. Turan, and I. Verbauwhede, “Prime+scope:

Overcoming the observer effect for high-precision cache

contention attacks,” in CCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security,

23

Virtual Event, Republic of Korea, November 15 -
19, 2021, Y. Kim, J. Kim, G. Vigna, and E. Shi,

Eds. ACM, 2021, pp. 2906–2920. [Online]. Available:

https://doi.org/10.1145/3460120.3484816

[17] M. K. Qureshi, “CEASER: mitigating conflict-based

cache attacks via encrypted-address and remapping,” in

MICRO, 2018, pp. 775–787.

[18] ——, “New attacks and defense for encrypted-address

cache,” in ISCA, 2019, pp. 360–371.

[19] G. Saileshwar and M. Qureshi, “{MIRAGE}: Mitigating

Conflict-Based Cache Attacks with a Practical Fully-

Associative Design,” in 30th {USENIX} Security Sym-
posium ({USENIX} Security 21), 2021, pp. 1379–1396.

[20] A. Sandberg, N. Nikoleris, T. E. Carlson, E. Hagersten,

S. Kaxiras, and D. Black-Schaffer, “Full Speed Ahead:

Detailed Architectural Simulation at Near-Native Speed,”

in 2015 IEEE International Symposium on Workload
Characterization, Oct. 2015, pp. 183–192.

[21] T. Schneider and A. Moradi, “Leakage assessment

methodology - A clear roadmap for side-channel

evaluations,” in Cryptographic Hardware and Embedded
Systems - CHES 2015 - 17th International
Workshop, Saint-Malo, France, September 13-16, 2015,
Proceedings, ser. Lecture Notes in Computer Science,

T. Güneysu and H. Handschuh, Eds., vol. 9293.

Springer, 2015, pp. 495–513. [Online]. Available:

https://doi.org/10.1007/978-3-662-48324-4 25

[22] A. Seznec, “A case for two-way skewed-associative

caches,” in Proceedings of the 20th Annual International
Symposium on Computer Architecture, ser. ISCA ’93.

New York, NY, USA: Association for Computing Ma-

chinery, May 1993, pp. 169–178.

[23] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal,

Y. Oren, and Y. Yarom, “Robust website fingerprinting

through the cache occupancy channel,” in USENIX Se-
curity, 2019, pp. 639–656.

[24] Q. Tan, Z. Zeng, K. Bu, and K. Ren, “PhantomCache:

Obfuscating cache conflicts with localized randomiza-

tion,” in NDSS, 2020.

[25] P. Vila, B. Köpf, and J. F. Morales, “Theory and practice

of finding eviction sets,” in IEEE SP, 2019, pp. 39–54.

[26] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers,

and G. E. Suh, “Secdcp: secure dynamic cache

partitioning for efficient timing channel protection,” in

Proceedings of the 53rd Annual Design Automation
Conference, DAC 2016, Austin, TX, USA, June 5-9,
2016. ACM, 2016, pp. 74:1–74:6. [Online]. Available:

https://doi.org/10.1145/2897937.2898086

[27] Z. Wang and R. B. Lee, “New cache designs for thwart-

ing software cache-based side channel attacks,” in ISCA,

2007, pp. 494–505.

[28] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz,

D. Gruss, and S. Mangard, “ScatterCache: Thwarting

cache attacks via cache set randomization,” in USENIX
Security, 2019, pp. 675–692.

[29] WikiChip, “Skylake (server) - microarchitectures - in-
tel,” https://en.wikichip.org/wiki/intel/microarchitectures/

skylake (server), May 2017.

[30] W. Xiong and J. Szefer, “Leaking Information Through

Cache LRU States,” in 2020 IEEE International Sym-
posium on High Performance Computer Architecture
(HPCA), Feb. 2020, pp. 139–152.

[31] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache

telepathy: Leveraging shared resource attacks to

learn DNN architectures,” in 29th USENIX Security
Symposium, USENIX Security 2020, August 12-14, 2020,

S. Capkun and F. Roesner, Eds. USENIX Association,

2020, pp. 2003–2020. [Online]. Available: https://www.

usenix.org/conference/usenixsecurity20/presentation/yan

[32] Y. Yarom and K. Falkner, “Flush+Reload: A high res-

olution, low noise, L3 cache side-channel attack,” in

USENIX Security, 2014, pp. 719–732.

[33] X. Zhang, S. Dwarkadas, and K. Shen, “Towards

practical page coloring-based multicore cache

management,” in Proceedings of the 2009 EuroSys
Conference, Nuremberg, Germany, April 1-3, 2009,

W. Schröder-Preikschat, J. Wilkes, and R. Isaacs,

Eds. ACM, 2009, pp. 89–102. [Online]. Available:

https://doi.org/10.1145/1519065.1519076

24

